Abstract Interpretation with Higher-Dimensional Ellipsoids and Conic Extrapolation
暂无分享,去创建一个
[1] Stephen P. Boyd,et al. Semidefinite Programming , 1996, SIAM Rev..
[2] Kristopher L. Kuhlman,et al. mpmath: a Python library for arbitrary-precision floating-point arithmetic , 2017 .
[3] Jamal Daafouz,et al. Stability analysis and control synthesis for switched systems: a switched Lyapunov function approach , 2002, IEEE Trans. Autom. Control..
[4] Pierre Roux,et al. Computing Quadratic Invariants with Min- and Max-Policy Iterations: A Practical Comparison , 2014, FM.
[5] Bertrand Jeannet,et al. Apron: A Library of Numerical Abstract Domains for Static Analysis , 2009, CAV.
[6] Eric Feron,et al. A generic ellipsoid abstract domain for linear time invariant systems , 2012, HSCC '12.
[7] Leonid Khachiyan,et al. On the Complexity of Semidefinite Programs , 1997, J. Glob. Optim..
[8] Jérôme Feret,et al. Static Analysis of Digital Filters , 2004, ESOP.
[9] Arkadi Nemirovski,et al. Lectures on modern convex optimization - analysis, algorithms, and engineering applications , 2001, MPS-SIAM series on optimization.
[10] Gaël Varoquaux,et al. The NumPy Array: A Structure for Efficient Numerical Computation , 2011, Computing in Science & Engineering.
[11] E. Alper Yildirim,et al. On the Minimum Volume Covering Ellipsoid of Ellipsoids , 2006, SIAM J. Optim..
[12] Arnaud Venet,et al. The Gauge Domain: Scalable Analysis of Linear Inequality Invariants , 2012, CAV.
[13] Rekha R. Thomas,et al. Semidefinite Optimization and Convex Algebraic Geometry , 2012 .
[14] Patrick Cousot,et al. Abstract Interpretation Frameworks , 1992, J. Log. Comput..
[15] Federico Thomas,et al. An ellipsoidal calculus based on propagation and fusion , 2002, IEEE Trans. Syst. Man Cybern. Part B.
[16] Jérôme Feret. Numerical Abstract Domains for Digital Filters ⋆ , 2007 .
[17] Patrick Cousot,et al. Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints , 1977, POPL.