Dualistic distribution coefficients of trace elements in the system mineral–hydrothermal solution. IV. Platinum and silver in pyrite

[1]  M. Reich,et al.  Constraints on the solid solubility of Hg, Tl, and Cd in arsenian pyrite , 2016 .

[2]  V. Tauson,et al.  Dualistic distribution coefficients of trace elements in the system mineral–hydrothermal solution. III. precious metals (Au and Pd) in magnetite and manganmagnetite , 2016, Geochemistry International.

[3]  M. Reich,et al.  1 Revision 1 ( # 5603 )-Submitted to American Mineralogist 1 2 Constraints on the solid solubility of Hg , Tl and Cd in arsenian pyrite 3 4 , 2016 .

[4]  T. Yokoyama,et al.  Sorption behavior of the Pt(II) complex anion on manganese dioxide (δ-MnO2): a model reaction to elucidate the mechanism by which Pt is concentrated into a marine ferromanganese crust , 2016, Mineralium Deposita.

[5]  K. Kokh,et al.  Experimental constraints on gold and silver solubility in iron sulfides , 2015 .

[6]  M. Law,et al.  Atomistic Modeling of Sulfur Vacancy Diffusion Near Iron Pyrite Surfaces , 2015 .

[7]  V. Tauson,et al.  Modes of Au, Pt, and Pd occurrence in arsenopyrite from the Natalkinskoe deposit, NE Russia , 2015, Geochemistry International.

[8]  B. Loginov,et al.  Influence of surface nanophases on the processes of crystal formation in multiphase mineral systems , 2014, Doklady Earth Sciences.

[9]  J. Long,et al.  Trace element content of sedimentary pyrite as a new proxy for deep-time ocean-atmosphere evolution , 2014 .

[10]  V. Tauson,et al.  Trace elements as indicators of the physicochemical conditions of mineral formation in hydrothermal sulfide systems , 2013 .

[11]  F. Gervilla,et al.  Platinum-group elements-bearing pyrite from the Aguablanca Ni-Cu sulphide deposit (SW Spain): a LA-ICP-MS study , 2013 .

[12]  M. Parada,et al.  Pyrite as a record of hydrothermal fluid evolution in a porphyry copper system: A SIMS/EMPA trace element study , 2013 .

[13]  W. Skinner,et al.  Formation of As(II)-pyrite during experimental replacement of magnetite under hydrothermal conditions , 2013 .

[14]  K. Sangwal Etching of Crystals: Theory, Experiment and Application , 2012 .

[15]  S. Rychagov,et al.  Hydrothermal clays of the geothermal fields of South Kamchatka: A new approach and study results , 2012, Geochemistry International.

[16]  V. Tauson,et al.  Dualistic distribution coefficients of elements in the system mineral-hydrothermal solution. II. Gold in magnetite , 2012, Geochemistry International.

[17]  T. Pastushkova,et al.  Dualistic distribution coefficients of elements in the system mineral-hydrothermal solution. I. Gold accumulation in pyrite , 2011 .

[18]  B. Loginov,et al.  Partition of heavy metals (Hg, Cd, and Pb) between sphalerite and hydrothermal solution and the typomorphism of sphalerite surface: XPS, AES, and AFM data , 2010 .

[19]  J. Martínez-Frías,et al.  Platinum-Group Element concentrations in pyrrhotite, pentlandite, chalcopyrite and pyrite from the Aguablanca Ni-Cu ore deposit (Southwest Spain) , 2010 .

[20]  E. Watson,et al.  Retention of biosignatures and mass-independent fractionations in pyrite: Self-diffusion of sulfur , 2009 .

[21]  T. Pettke,et al.  Platinum solubility and partitioning in a felsic melt vapor brine assemblage , 2009 .

[22]  V. Tauson,et al.  Surface typochemistry of hydrothermal pyrite: Electron spectroscopic and scanning probe microscopic data. II. Natural pyrite , 2008 .

[23]  V. Tauson,et al.  Quantitative determination of modes of gold occurrence in minerals by the statistical analysis of analytical data samplings , 2008 .

[24]  V. Tauson,et al.  Surface typochemistry of hydrothermal pyrite: Electron spectroscopic and scanning probe microscopic data. I. Synthetic pyrite , 2008 .

[25]  R. Pattrick,et al.  Variations in the compositional, textural and electrical properties of natural pyrite: a review , 2004 .

[26]  S. M. Ruano,et al.  Iron sulphides at the epithermal gold-copper deposit of Palai-Islica (Almería, SE Spain) , 2003 .

[27]  A. Bochkarev,et al.  Isotope separation during ionic crystal growth from solution , 2003 .

[28]  V. Tauson,et al.  Introduction to the theory of forced equilibria: General principles, basic concepts, and definitions , 1997 .

[29]  J. Arnason,et al.  Gold and platinum-group element mineralization in the Kruuse Fjord gabbro complex, East Greenland , 1997 .

[30]  G. McMahon,et al.  Pt, Pd and other trace elements in sulfides of the Main Sulfide Zone, Great Dyke, Zimbabwe; a reconnaissance study , 1997 .

[31]  Hiroshi Ohmoto,et al.  Experimental study of formation mechanisms of hydrothermal pyrite , 1994 .

[32]  E. Makovicky,et al.  The phase system Pt-Fe-As-S at 850°C and 470°C , 1992 .

[33]  W. Stickle,et al.  Handbook of X-Ray Photoelectron Spectroscopy , 1992 .

[34]  O. Kr Standard molar enthalpies of formation of sulfosalts in the Ag-As-S system and thermochemistry of the sulfosalts of Ag with As, Sb, and Bi , 1989 .

[35]  E. Makovicky,et al.  Experimental Evidence on the Formation and Mineralogy of Platinum and Palladium Ore Deposits , 1988 .

[36]  R. Lacmann K. Sangwal: Etching of crystals; theory, experiment, and application, Volume 15 aus, der Reihe: Defects in Solids, (Eds.), S. Amelinckx — J. Nihoul, North‐Holland, Amsterdam, Oxford, New York, Tokyo 1987. 497 Seiten, Preis: Dfl. 275.— , 1987 .

[37]  K. Sangwal Etching of crystals , 1987 .

[38]  L. Cabri,et al.  Proton-microprobe analysis of trace elements in sulfides from some massive-sulfide deposits , 1985 .

[39]  F. Cesbron,et al.  La dervillite, Ag2AsS2, nouvelle définition de l'espèce , 1983 .

[40]  L. Cabri Glossary of platinum-group minerals , 1976 .

[41]  W. W. Harvey,et al.  Cation self-diffusion in chalcopyrite and pyrite , 1975 .

[42]  G. Roland Phase relations below 575 degrees C in the system Ag-As-S , 1970 .

[43]  L. Taylor The system Ag-Fe-S: Phase equilibria and mineral assemblages , 1970 .