Dynamical modeling with application to friction phenomena

The thesis deals with dynamical modeling as an alternative approach to the conventional way of modeling with static models. From the perspective of generalized synchronization the main concepts of dynamical modeling are developed. As an important subclass of dynamical models, Recurrent Neural Networks are investigated and several algorithms for improved modeling are presented. In the last part of the thesis dynamical modeling is applied to friction phenomena. Data from friction experiments is used to model the diverse apects of friction in the sliding and pre-sliding regime.

[1]  J. Yorke,et al.  Differentiable generalized synchronization of chaos , 1997 .

[2]  J. S. Courtney‐Pratt,et al.  The effect of a tangential force on the contact of metallic bodies , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[3]  Jan Swevers,et al.  Modification of the Leuven integrated friction model structure , 2002, IEEE Trans. Autom. Control..

[4]  Ulrich Parlitz,et al.  Superstructure in the bifurcation set of the Duffing equation ẍ + dẋ + x + x3 = f cos(ωt) , 1985 .

[5]  Sheng Chen,et al.  Orthogonal least squares methods and their application to non-linear system identification , 1989 .

[6]  L. Tsimring,et al.  Generalized synchronization of chaos in directionally coupled chaotic systems. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[7]  Harald Haas,et al.  Harnessing Nonlinearity: Predicting Chaotic Systems and Saving Energy in Wireless Communication , 2004, Science.

[8]  Keith Worden,et al.  Measurement and Identification of Pre‐Sliding Friction Dynamics , 2005 .

[9]  H. Abarbanel,et al.  Generalized synchronization of chaos: The auxiliary system approach. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[10]  Ulrich Parlitz,et al.  Bias Reduction for Time Series Models Based on Support Vector Regression , 2004, Int. J. Bifurc. Chaos.

[11]  Ulrich Parlitz,et al.  Comparison of Different Methods for Computing Lyapunov Exponents , 1990 .

[12]  Tegoeh Tjahjowidodo,et al.  IDENTIFICATION OF PRE-SLIDING AND SLIDING FRICTION , 2005 .

[13]  E. Rabinowicz The Nature of the Static and Kinetic Coefficients of Friction , 1951 .

[14]  Bernard Friedland,et al.  On the Modeling and Simulation of Friction , 1990, 1990 American Control Conference.

[15]  Pyragas,et al.  Weak and strong synchronization of chaos. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[16]  Luis Antonio Aguirre,et al.  Modeling Chaotic Dynamics with discrete nonlinear Rational Models , 2000, Int. J. Bifurc. Chaos.

[17]  Carlos Canudas de Wit,et al.  A new model for control of systems with friction , 1995, IEEE Trans. Autom. Control..

[18]  S. Billings,et al.  DISCRETE WAVELET MODELS FOR IDENTIFICATION AND QUALITATIVE ANALYSIS OF CHAOTIC SYSTEMS , 1999 .

[19]  Henry Markram,et al.  Real-Time Computing Without Stable States: A New Framework for Neural Computation Based on Perturbations , 2002, Neural Computation.

[20]  Stephen A. Billings,et al.  Parameter estimation for stochastic nonlinear rational models , 1993 .

[21]  A. Soom,et al.  Friction at a Lubricated Line Contact Operating at Oscillating Sliding Velocities , 1990 .

[22]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[23]  Carroll,et al.  Statistics for mathematical properties of maps between time series embeddings. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[24]  G. Ermentrout,et al.  Amplitude response of coupled oscillators , 1990 .

[25]  Carlos Canudas de Wit,et al.  Friction Models and Friction Compensation , 1998, Eur. J. Control.

[26]  Jeffrey L. Elman,et al.  Finding Structure in Time , 1990, Cogn. Sci..

[27]  H. Fujisaka,et al.  Stability Theory of Synchronized Motion in Coupled-Oscillator Systems , 1983 .

[28]  Stephen A. Billings,et al.  Radial Basis Function Network Configuration Using Mutual Information and the Orthogonal Least Squares Algorithm , 1996, Neural Networks.

[29]  Ah Chung Tsoi,et al.  Locally recurrent globally feedforward networks: a critical review of architectures , 1994, IEEE Trans. Neural Networks.

[30]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.

[31]  Sheng Chen,et al.  Representations of non-linear systems: the NARMAX model , 1989 .

[32]  M. J. Korenberg,et al.  A robust orthogonal algorithm for system identification and time-series analysis , 1989, Biological Cybernetics.

[33]  F. Al-Bender,et al.  A Novel Generic Model at Asperity Level for Dry Friction Force Dynamics , 2004 .

[34]  E. Izhikevich,et al.  Weakly connected neural networks , 1997 .

[35]  Jan Swevers,et al.  Nonlocal hysteresis function identification and compensation with neural networks , 2005, IEEE Transactions on Instrumentation and Measurement.

[36]  Carlos Canudas de Wit,et al.  A survey of models, analysis tools and compensation methods for the control of machines with friction , 1994, Autom..

[37]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[38]  M. Rabinovich,et al.  Stochastic synchronization of oscillation in dissipative systems , 1986 .

[39]  Ronald J. Williams,et al.  A Learning Algorithm for Continually Running Fully Recurrent Neural Networks , 1989, Neural Computation.

[40]  Demosthenis D. Rizos,et al.  Identification of pre-sliding friction dynamics. , 2004, Chaos.

[41]  Parlitz,et al.  General approach for chaotic synchronization with applications to communication. , 1995, Physical Review Letters.

[42]  F. Al-Bender,et al.  Experimental Characterization of Dry Friction at Low Velocities on a Developed Tribometer Setup for Macroscopic Measurements , 2003 .

[43]  Michael I. Jordan Attractor dynamics and parallelism in a connectionist sequential machine , 1990 .

[44]  Stephen A. Billings,et al.  RETRIEVING DYNAMICAL INVARIANTS FROM CHAOTIC DATA USING NARMAX MODELS , 1995 .

[45]  Arkady Pikovsky,et al.  On the interaction of strange attractors , 1984 .

[46]  Karl Johan Åström,et al.  Control of Systems with Friction , 1998 .

[47]  P. Dahl A Solid Friction Model , 1968 .

[48]  Parlitz,et al.  Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems. , 1996, Physical review letters.

[49]  Gail D. Baura,et al.  Nonlinear System Identification , 2002 .

[50]  Jan Swevers,et al.  An integrated friction model structure with improved presliding behavior for accurate friction compensation , 1998, IEEE Trans. Autom. Control..

[51]  R J Cohen,et al.  Detection of chaotic determinism in time series from randomly forced maps. , 1997, Physica D. Nonlinear phenomena.

[52]  E. Braithwaite The friction and lubrication of solids, part II By F. P. Bowden and D. Tabor. Pp. xvi + 544. Clarendon Press, Oxford; Oxford University Press, London. 1964. 84s. net (U.K. only) , 1966 .

[53]  Ulrich Parlitz,et al.  COMMON DYNAMICAL FEATURES OF PERIODICALLY DRIVEN STRICTLY DISSIPATIVE OSCILLATORS , 1993 .

[54]  Herbert Jaeger,et al.  The''echo state''approach to analysing and training recurrent neural networks , 2001 .

[55]  S. Billings,et al.  Fast orthogonal identification of nonlinear stochastic models and radial basis function neural networks , 1996 .

[56]  William H. Press,et al.  Numerical recipes in C , 2002 .

[57]  F. Al-Bender,et al.  Modeling of dry sliding friction dynamics: from heuristic models to physically motivated models and back. , 2004, Chaos.

[58]  F. Al-Bender,et al.  A generalized Maxwell-slip friction model appropriate for control purposes , 2003, 2003 IEEE International Workshop on Workload Characterization (IEEE Cat. No.03EX775).