Computational aspects of low frequency electrical and electromagnetic tomography: A review study

This paper studies various mathematical methods for image recon- struction in electrical impedance and magnetic induction tomography. Linear, nonlinear and semilinear methods for the inverse problems are studied. De- pending on the application, one of these methods can be selected as the image reconstruction algorithm. Linear methods are suitable for low contrast imag- ing, and nonlinear methods are used when more accurate imaging results are required. A semilinear method can be used to preserve some properties of the nonlinear inverse solver and at the same time can have some advantages in com- putational time. Methods design speciflcally for jump in material distribution as well as dynamical imaging have been reviewed.

[1]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[2]  Wuqiang Yang,et al.  An image-reconstruction algorithm based on Landweber's iteration method for electrical-capacitance tomography , 1999 .

[3]  A Korjenevsky,et al.  Magnetic induction tomography: experimental realization. , 2000, Physiological measurement.

[4]  Antonello Tamburrino,et al.  Fast methods for quantitative eddy-current tomography of conductive materials , 2006, IEEE Transactions on Magnetics.

[5]  Wuliang Yin,et al.  Evaluation of the radiative wave propagation effect in EMT , 2006 .

[6]  William R B Lionheart,et al.  A Matlab toolkit for three-dimensional electrical impedance tomography: a contribution to the Electrical Impedance and Diffuse Optical Reconstruction Software project , 2002 .

[7]  E. Somersalo,et al.  Existence and uniqueness for electrode models for electric current computed tomography , 1992 .

[8]  S. Arridge,et al.  Optical imaging in medicine: II. Modelling and reconstruction , 1997, Physics in medicine and biology.

[9]  Martin Brühl,et al.  Explicit Characterization of Inclusions in Electrical Impedance Tomography , 2001, SIAM J. Math. Anal..

[10]  Keith D. Paulsen,et al.  Finite element implementation of Maxwell's equations for image reconstruction in electrical impedance tomography , 2006, IEEE Transactions on Medical Imaging.

[11]  Michel Barlaud,et al.  Deterministic edge-preserving regularization in computed imaging , 1997, IEEE Trans. Image Process..

[12]  Marko Subasic,et al.  Level Set Methods and Fast Marching Methods , 2003 .

[13]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[14]  H. Whitney Geometric Integration Theory , 1957 .

[15]  H. Lackner,et al.  Magnetic induction tomography: hardware for multi-frequency measurements in biological tissues. , 2001, Physiological measurement.

[16]  Antonello Tamburrino,et al.  A new non-iterative inversion method for electrical resistance tomography , 2002 .

[17]  David Isaacson,et al.  Electrical Impedance Tomography , 1999, SIAM Rev..

[18]  M. Soleimani,et al.  A three-dimensional inverse finite-element method applied to experimental eddy-current imaging data , 2006, IEEE Transactions on Magnetics.

[19]  F. Santosa,et al.  Reconstruction of a two-dimensional binary obstacle by controlled evolution of a level-set , 1998 .

[20]  Brian H. Brown,et al.  Imaging spatial distributions of resistivity using applied potential tomography , 1983 .

[21]  M. Soleimani,et al.  Level set reconstruction of conductivity and permittivity from boundary electrical measurements using experimental data , 2006 .

[22]  Xiandong Ma,et al.  Hardware and software design for an electromagnetic induction tomography (EMT) system for high contrast metal process applications , 2005 .

[23]  Manuchehr Soleimani,et al.  Nonlinear image reconstruction for electrical capacitance tomography using experimental data , 2005 .

[24]  R H Bayford,et al.  Bioimpedance tomography (electrical impedance tomography). , 2006, Annual review of biomedical engineering.

[25]  M. Soleimani,et al.  Conditional Bayes reconstruction for ERT data using resistance monotonicity information , 2006 .

[26]  Hermann Scharfetter,et al.  A new type of gradiometer for the receiving circuit of magnetic induction tomography (MIT). , 2005, Physiological measurement.

[27]  R. Albanese,et al.  Integral formulation for 3D eddy-current computation using edge elements , 1988 .

[28]  Nevzat G. Gencer,et al.  Electrical conductivity imaging via contactless measurements , 1999, IEEE Transactions on Medical Imaging.

[29]  P.A. Karjalainen,et al.  A Kalman filter approach to track fast impedance changes in electrical impedance tomography , 1998, IEEE Transactions on Biomedical Engineering.

[30]  M. Soleimani,et al.  Image reconstruction in three-dimensional magnetostatic permeability tomography , 2005, IEEE Transactions on Magnetics.

[31]  David Isaacson,et al.  A linearized inverse boundary value problem for Maxwell's equations , 1992 .

[32]  Simon R. Arridge,et al.  RECOVERY OF REGION BOUNDARIES OF PIECEWISE CONSTANT COEFFICIENTS OF AN ELLIPTIC PDE FROM BOUNDARY DATA , 1999 .

[33]  J. Hadamard,et al.  Lectures on Cauchy's Problem in Linear Partial Differential Equations , 1924 .

[34]  David S. Holder,et al.  Electrical Impedance Tomography : Methods, History and Applications , 2004 .

[35]  E. M. Freeman,et al.  A method of computing the sensitivity of electromagnetic quantities to changes in materials and sources , 1994 .

[36]  David Isaacson,et al.  Dynamic electrical impedance imaging of a chest phantom using the Kalman filter , 2006, Physiological measurement.

[37]  Thomas Rylander,et al.  Computational Electromagnetics , 2005, Electronics, Power Electronics, Optoelectronics, Microwaves, Electromagnetics, and Radar.

[38]  David Isaacson,et al.  NOSER: An algorithm for solving the inverse conductivity problem , 1990, Int. J. Imaging Syst. Technol..

[39]  Manuchehr Soleimani,et al.  Shape Reconstruction in Magnetic Induction Tomography Using Multifrequency Data , 2006 .

[40]  Manuchehr Soleimani,et al.  Improving the forward solver for the complete electrode model in EIT using algebraic multigrid , 2005, IEEE Transactions on Medical Imaging.

[41]  Manuchehr Soleimani,et al.  Sensitivity maps in three-dimensional magnetic induction tomography , 2006 .

[42]  A Tizzard,et al.  Improving the finite element forward model of the human head by warping using elastic deformation. , 2007, Physiological measurement.

[43]  Patricia Brunner,et al.  Reconstruction of the shape of conductivity spectra using differential multi-frequency magnetic induction tomography , 2006, Physiological measurement.

[44]  Bosco Fernandes,et al.  A portable inductive scanning system for imaging steel-reinforcing bars embedded within concrete , 2000 .

[45]  F. Santosa A Level-set Approach Inverse Problems Involving Obstacles , 1995 .

[46]  Marko Vauhkonen,et al.  Image reconstruction in time-varying electrical impedance tomography based on the extended Kalman filter , 2001 .

[47]  H Griffiths,et al.  Frequency downconversion and phase noise in MIT. , 2002, Physiological measurement.

[48]  Mohinder S. Grewal,et al.  Kalman Filtering: Theory and Practice Using MATLAB , 2001 .

[49]  E. Somersalo,et al.  Approximation errors and model reduction with an application in optical diffusion tomography , 2006 .

[50]  Hermann Scharfetter,et al.  Biological tissue characterization by magnetic induction spectroscopy (MIS): requirements and limitations , 2003, IEEE Transactions on Biomedical Engineering.

[51]  Ville Kolehmainen,et al.  The Inverse Conductivity Problem with an Imperfectly Known Boundary , 2005, SIAM J. Appl. Math..

[52]  Manuchehr Soleimani,et al.  A noniterative inversion method for electrical resistance, capacitance and inductance tomography for two phase materials , 2003 .

[53]  H Griffiths,et al.  Magnetic induction tomography: phase versus vector-voltmeter measurement techniques , 2003, Physiological measurement.

[54]  Anthony J. Peyton,et al.  Imaging molten steel flow profiles , 2001, SPIE Optics East.

[55]  V. A. Morozov,et al.  Methods for Solving Incorrectly Posed Problems , 1984 .

[56]  A. Peirce Computer Methods in Applied Mechanics and Engineering , 2010 .

[57]  T. Dahlin,et al.  A comparison of the Gauss-Newton and quasi-Newton methods in resistivity imaging inversion , 2002 .

[58]  Eric T. Chung,et al.  Electrical impedance tomography using level set representation and total variational regularization , 2005 .

[59]  Anthony Peyton,et al.  Electromagnetic Imaging Using Mutual Inductance Tomography: Potential for process applications , 1995 .

[60]  O. Dössel,et al.  Planar system for magnetic induction conductivity measurement using a sensor matrix. , 2004, Physiological measurement.

[61]  R Casanova,et al.  MIT image reconstruction based on edge-preserving regularization. , 2004, Physiological measurement.

[62]  A.H. Haddad,et al.  Applied optimal estimation , 1976, Proceedings of the IEEE.

[63]  H Scharfetter,et al.  A multifrequency magnetic induction tomography system using planar gradiometers: data collection and calibration. , 2006, Physiological measurement.

[64]  Manuchehr Soleimani Numerical modelling and analysis of the forward and inverse problems in electrical capacitance tomography , 2005 .

[65]  Lihui Peng,et al.  Image reconstruction algorithms for electrical capacitance tomography , 2003 .

[66]  Hermann Scharfetter,et al.  Sensitivity maps for low-contrast perturbations within conducting background in magnetic induction tomography. , 2002, Physiological measurement.

[67]  Wuqiang Yang,et al.  Dynamic imaging in electrical capacitance tomography and electromagnetic induction tomography using a Kalman filter , 2007 .

[68]  Manuchehr Soleimani,et al.  Absolute Conductivity Reconstruction in Magnetic Induction Tomography Using a Nonlinear Method , 2006, IEEE Transactions on Medical Imaging.

[69]  O. Dorn,et al.  Level set methods for inverse scattering , 2006 .

[70]  Martin Hanke,et al.  Recent progress in electrical impedance tomography , 2003 .

[72]  M. Soleimani Level-Set Method Applied to Magnetic Induction Tomography Using Experimental Data , 2007 .