Forced Response Reduction of a Compressor Blisk Rotor Employing Intentional Mistuning

Using the example of a compressor test blisk with 29 blades different sources of mistuning and their consequences for the forced response are analysed under consideration of aeroelastic effects. In particular the impact of superimposing intentional structural mistuning by both random structural mistuning and aerodynamic mistuning is studied. For this purpose reduced order models of the blisk are adjusted for different mistuning distributions. The mistuning itself is characterized by assigning individual stiffness parameters to each blade. The aeroelastic coupling is included employing aerodynamic influence coefficients. By means of genetic algorithm optimizations, structural mistuning patterns are found which yield a mitigation of the forced response below that of the tuned design reference. Ideally a nearly 50 % reduction of maximum response magnitudes is computed for the fundamental bending mode and large mistuning. The solutions found have been proven to be robust with respect to additional random and aerodynamic mistuning in case of large intentional structural mistuning.