Bite‐force performance of the last rhynchocephalian (Lepidosauria: Sphenodon)

Abstract We present the first empirical measurements of bite‐force performance from adult Sphenodon (Rhynchocephalia), the only extant non‐squamate lepidosaur. Using raw bite‐force data, we calculated maximum bite forces at the anterior and posterior extremes of the lower tooth row: 81.8 N and 163.5 N (female) and 119.1 N and 238.3 N (male). Combining our results with published data from juvenile animals, we calculated scaling coefficients of bite force on linear morphometrics of body and head size as c. 2.7 (anterior) and c. 3.5+ (posterior). These exceed isometric scaling predictions (2.0), yet are similar to those for other non‐avian reptiles. This supports previous views that Sphenodon cannot bite as hard as agamid lizards. We discuss the role of bite force in the behavioural ecology of Sphenodon, propose that the lower temporal bar, unique among extant lepidosaurs, does not necessarily constrain bite force, and evaluate possible effects of other morphological characteristics on bite‐force performance.

[1]  A. Cree,et al.  Stable carbon isotope ratios as indicators of marine versus terrestrial inputs to the diets of wild and captive tuatara (Sphenodon punctatus) , 1999 .

[2]  S. Pledger,et al.  Egg mass determines hatchling size, and incubation temperature influences post-hatching growth, of tuatara Sphenodon punctatus , 2004 .

[3]  Leverett Allen Adams,et al.  A MEMOIR ON THE PHYLOGENY OF THE JAW MUSCLES IN RECENT AND FOSSIL VERTEBRATES , 1918 .

[4]  J. Hanken,et al.  Patterns of structural and systematic diversity , 1993 .

[5]  C. Mlot Return of the tuatara: A relict from the age of dinosaurs gets a human assist , 1997 .

[6]  O. Rieppel,et al.  The loss of the lower temporal arcade in diapsid reptiles , 1981 .

[7]  A. Herrel,et al.  Ecological consequences of ontogenetic changes in head shape and bite performance in the Jamaican lizard Anolis lineatopus , 2006 .

[8]  S. Evans,et al.  The evolution of the lepidosaurian lower temporal bar: new perspectives from the Late Cretaceous of South China , 2009, Proceedings of the Royal Society B: Biological Sciences.

[9]  S. Evans,et al.  A sphenodontine (Rhynchocephalia) from the Miocene of New Zealand and palaeobiogeography of the tuatara (Sphenodon) , 2009, Proceedings of the Royal Society B: Biological Sciences.

[10]  A. Lappin,et al.  Comparison of bite‐force performance between long‐term captive and wild American alligators (Alligator mississippiensis) , 2004 .

[11]  P. O’Higgins,et al.  The head and neck muscles associated with feeding in Sphenodon (Reptilia: Lepidosauria: Rhynchocephalia) , 2009 .

[12]  C. Skeaff,et al.  Plasma fatty acids, triacylglycerol and cholesterol of the tuatara ( Sphenodon punctatus punctatus ) from islands differing in the presence of rats and the abundance of seabirds , 2000 .

[13]  V. Meyer-Rochow,et al.  Photoreceptor cell types in the retina of the tuatara (Sphenodon punctatus) have cone characteristics. , 2005, Micron.

[14]  A. Lappin,et al.  The ontogeny of bite-force performance in American alligator (Alligator mississippiensis) , 2003 .

[15]  R. Shine Ecological Causes for the Evolution of Sexual Dimorphism: A Review of the Evidence , 1989, The Quarterly Review of Biology.

[16]  F. Ayala Molecular systematics , 2004, Journal of Molecular Evolution.

[17]  W. Dawbin The tuatara in its natural habitat , 1962 .

[18]  D. Whiteside The Head Skeleton of the Rhaetian Sphenodontid Diphydontosaurus Avonis Gen. Et Sp. Nov. and the Modernizing of a Living Fossil , 1986 .

[19]  A. Herrel,et al.  Head shape and bite performance in xenosaurid lizards. , 2001, The Journal of experimental zoology.

[20]  Marc E. H. Jones Skull shape and feeding strategy in Sphenodon and other Rhynchocephalia (Diapsida: Lepidosauria) , 2008, Journal of morphology.

[21]  S. Evans,et al.  New lizards and rhynchocephalians from the Lower Cretaceous of southern Italy , 2004 .

[22]  J. C. Gillingham,et al.  SOCIAL BEHAVIOR OF THE TUATARA, SPHENODON PUNCTATUS , 1995 .

[23]  A. Herrel,et al.  Scaling of morphology, bite force, and feeding kinematics in an iguanian and a sclerosglossan lizard , 2002 .

[24]  S. Patek,et al.  Integrative and Comparative Biology , 2006 .

[25]  W. K. Gregory,et al.  The Temporal Fossae of Vertebrates in Relation to the Jaw Muscles , 1915 .

[26]  Thomas W. Schoener,et al.  Some Niche Differences in Three Lesser Antillean Lizards of the Genus Anolis , 1968 .

[27]  Michael R Kearney,et al.  Predicting the fate of a living fossil: how will global warming affect sex determination and hatching phenology in tuatara? , 2008, Proceedings of the Royal Society B: Biological Sciences.

[28]  A. Bellairs,et al.  Morphology and biology of reptiles , 1978 .

[29]  T. Frazzetta Adaptive problems and possibilities in the temporal fenestration of tetrapod skulls , 1968, Journal of morphology.

[30]  A. Herrel,et al.  Performance capacity, fighting tactics and the evolution of life–stage male morphs in the green anole lizard (Anolis carolinensis) , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[31]  J. Farlow Observations on a Captive Tuatara (Sphenodon punctatum) , 1975 .

[32]  S. Evans The skull of lizards and Tuatara , 2008 .

[33]  F. Allendorf,et al.  Species and Cultural Conservation in New Zealand: Maori Traditional Ecological Knowledge of Tuatara , 2007, Conservation biology : the journal of the Society for Conservation Biology.

[34]  E. Tibbetts,et al.  Molecular systematics of primary reptilian lineages and the tuatara mitochondrial genome. , 2003, Molecular phylogenetics and evolution.

[35]  A. Herrel,et al.  Relationships between head size, bite force, prey handling efficiency and diet in two sympatric lacertid lizards , 2002 .

[36]  A. Herrel,et al.  The implications of bite performance for diet in two species of lacertid lizards , 2001 .

[37]  Anthony Herrel,et al.  Ontogeny of Performance in Vertebrates* , 2005, Physiological and Biochemical Zoology.

[38]  D. Kemp,et al.  Gaping Displays Reveal and Amplify a Mechanically Based Index of Weapon Performance , 2006, The American Naturalist.

[39]  A. Herrel,et al.  The evolution of cranial design and performance in squamates: Consequences of skull-bone reduction on feeding behavior. , 2007, Integrative and comparative biology.

[40]  A. Lappin,et al.  Sexual Dimorphism as It Relates to Natural History of Leopard Lizards (Crotaphytidae: Gambelia) , 1999 .

[41]  L. McBrayer,et al.  Prey processing in lizards: behavioral variation in sit-and-wait and widely foraging taxa , 2002 .

[42]  M. Hutchinson,et al.  Miocene skinks and geckos reveal long-term conservatism of New Zealand's lizard fauna , 2009, Biology Letters.

[43]  Jerry F Husak,et al.  Weapon Performance, Not Size, Determines Mating Success and Potential Reproductive Output in the Collared Lizard (Crotaphytus collaris) , 2005, The American Naturalist.

[44]  Richard. Sharell The tuatara, lizards and frogs of New Zealand , 1966 .

[45]  N. Fraser The Osteology and Relationships of Clevosaurus (Reptilia: Sphenodontida) , 1988 .

[46]  P. Aerts,et al.  The functional significance of the lower temporal bar in Sphenodon punctatus , 2008, Journal of Experimental Biology.

[47]  K. Schwenk Morphology of the tongue in the tuatara, Sphenodon punctatus (Reptilia: Lepidosauria), with comments on function and phylogeny , 1986, Journal of morphology.

[48]  S. Evans,et al.  Biotic Response to Global Change: Amphibians, reptiles and birds: a biogeographical review , 2000 .

[49]  F. Novas,et al.  Large Cretaceous sphenodontian from Patagonia provides insight into lepidosaur evolution in Gondwana , 2003, Nature.

[50]  P. Rawson,et al.  Biotic response to global change : the last 145 million years , 2000 .

[51]  S. Evans At the feet of the dinosaurs: the early history and radiation of lizards , 2003, Biological reviews of the Cambridge Philosophical Society.

[52]  D. Pratten,et al.  The diet of adult and juvenile Agama bibroni (Reptilia: Lacertae) and a study of the jaw mechanisms in the two age groups , 2009 .

[53]  C. Gans,et al.  Courtship, Mating and Male Combat in Tuatara, Sphenodon punctatus , 1984 .

[54]  A. Günther III. Contribution to the anatomy of hatteria (rhynchocephalus, Owen) , 1867, Proceedings of the Royal Society of London.

[55]  S. Evans,et al.  Rhynchocephalians (Diapsida: Lepidosauria) from the Jurassic Kota Formation of India , 2001 .

[56]  T. Schoener The Anolis Lizards of Bimini: Resource Partitioning in a Complex Fauna , 1968 .

[57]  E. C. Olson JAW MECHANISMS: RHIPIDISTIANS, AMPHIBIANS, REPTILES , 1961 .

[58]  Anthony Herrel,et al.  Sexual dimorphism of head size in Gallotia galloti: testing the niche divergence hypothesis by functional analyses , 1999 .

[59]  Kurt Schwenk,et al.  History and the Global Ecology of Squamate Reptiles , 2003, The American Naturalist.

[60]  C. Daugherty,et al.  Reproduction of a Rare New Zealand Reptile, the Tuatara Sphenodon punctatus, on Rat‐Free and Rat‐Inhabited Islands , 1995 .

[61]  C. Gans,et al.  Mastication in the tuatara, Sphenodon punctatus (reptilia: Rhynchocephalia): Structure and activity of the motor system , 1982, Journal of morphology.

[62]  Graham T. Ussher Tuatara (Sphenodon punctatus) feeding ecology in the presence of kiore (Rattus exulans) , 1999 .

[63]  A. Lappin,et al.  The fitness advantage of a high‐performance weapon , 2009 .

[64]  C. Daugherty,et al.  Neglected taxonomy and continuing extinctions of tuatara (Sphenodon) , 1990, Nature.

[65]  Kurt Schwenk,et al.  Feeding : form, function, and evolution in tetrapod vertebrates , 2000 .

[66]  T. Schoener The Ecological Significance of Sexual Dimorphism in Size in the Lizard Anolis conspersus , 1967, Science.

[67]  J. Husak,et al.  Bite-Force Performance Predicts Dominance in Male Venerable Collared Lizards (Crotaphytus antiquus) , 2006, Copeia.

[68]  Susan E. Evans,et al.  Predicting muscle activation patterns from motion and anatomy: modelling the skull of Sphenodon (Diapsida: Rhynchocephalia) , 2010, Journal of The Royal Society Interface.

[69]  T. G. Bunt,et al.  I. Discussion of tide observations at Bristol , 1867, Philosophical Transactions of the Royal Society of London.

[70]  Meh Jones The Jurassic clevosaurs from China , 2006 .

[71]  Kurt Schwenk,et al.  CHAPTER 8 – Feeding in Lepidosaurs , 2000 .

[72]  Xiaocong Wu Functional morphology of the temporal region in the Rhynchocephalia , 2003 .

[73]  A. Herrel,et al.  Evolution of bite performance in turtles , 2002 .

[74]  A. Lappin,et al.  Bite-force performance and head shape in a sexually dimorphic crevice-dwelling lizard, the common chuckwalla [Sauromalus ater (= obesus)] , 2006 .

[75]  A. Herrel,et al.  Functional and ecological correlates of ecologically-based dimorphisms in squamate reptiles. , 2007, Integrative and comparative biology.

[76]  J. Losos,et al.  Cautionary comments on the measurement of maximum locomotor capabilities , 2002 .

[77]  H. Seligmann,et al.  Morphological, functional and evolutionary aspects of tail autotomy and regeneration in the 'living fossil' Sphenodon (Reptilia: Rhynchocephalia) , 2008 .