Room‐Temperature Solution‐Synthesized p‐Type Copper(I) Iodide Semiconductors for Transparent Thin‐Film Transistors and Complementary Electronics

Here, room‐temperature solution‐processed inorganic p‐type copper iodide (CuI) thin‐film transistors (TFTs) are reported for the first time. The spin‐coated 5 nm thick CuI film has average hole mobility (µFE) of 0.44 cm2 V−1 s−1 and on/off current ratio of 5 × 102. Furthermore, µFE increases to 1.93 cm2 V−1 s−1 and operating voltage significantly reduces from 60 to 5 V by using a high permittivity ZrO2 dielectric layer replacing traditional SiO2. Transparent complementary inverters composed of p‐type CuI and n‐type indium gallium zinc oxide TFTs are demonstrated with clear inverting characteristics and voltage gain over 4. These outcomes provide effective approaches for solution‐processed inorganic p‐type semiconductor inks and related electronics.

[1]  H. Hosono,et al.  Material Design of p‐Type Transparent Amorphous Semiconductor, Cu–Sn–I , 2018, Advanced materials.

[2]  Guoxia Liu,et al.  Solution-processed ternary p-type CuCrO2 semiconductor thin films and their application in transistors , 2018 .

[3]  Y. Ninomiya,et al.  High‐Mobility Transparent p‐Type CuI Semiconducting Layers Fabricated on Flexible Plastic Sheets: Toward Flexible Transparent Electronics , 2017 .

[4]  Neha Arora,et al.  Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20% , 2017, Science.

[5]  M. McLachlan,et al.  Copper(I) Thiocyanate (CuSCN) Hole‐Transport Layers Processed from Aqueous Precursor Solutions and Their Application in Thin‐Film Transistors and Highly Efficient Organic and Organometal Halide Perovskite Solar Cells , 2017 .

[6]  E. Fortunato,et al.  Solution Combustion Synthesis: Low‐Temperature Processing for p‐Type Cu:NiO Thin Films for Transparent Electronics , 2017, Advances in Materials.

[7]  Myung‐Han Yoon,et al.  Sol-gel metal oxide dielectrics for all-solution-processed electronics , 2017 .

[8]  G. Tröster,et al.  Solution-processed p-type copper(I) thiocyanate (CuSCN) for low-voltage flexible thin-film transistors and integrated inverter circuits , 2017 .

[9]  Pichaya Pattanasattayavong,et al.  Electronic Properties of Copper(I) Thiocyanate (CuSCN) , 2017 .

[10]  Chih-hung Chang,et al.  Low-temperature, inkjet printed p-type copper(I) iodide thin film transistors , 2016 .

[11]  M. Grundmann,et al.  Room-temperature synthesized copper iodide thin film as degenerate p-type transparent conductor with a boosted figure of merit , 2016, Proceedings of the National Academy of Sciences.

[12]  R. Egdell,et al.  P-type transparent conducting oxides , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[13]  Y. Ninomiya,et al.  Truly Transparent p-Type γ-CuI Thin Films with High Hole Mobility , 2016 .

[14]  E. Fortunato,et al.  Hole mobility modulation of solution-processed nickel oxide thin-film transistor based on high-k dielectric , 2016 .

[15]  Jin Jang,et al.  High performance p-type NiOx thin-film transistor by Sn doping , 2016 .

[16]  P. K. Nayak,et al.  Recent Developments in p‐Type Oxide Semiconductor Materials and Devices , 2016, Advanced materials.

[17]  Xinge Yu,et al.  Metal oxides for optoelectronic applications. , 2016, Nature materials.

[18]  V. Subramanian,et al.  Mobility Enhancement in Solution‐Processed Transparent Conductive Oxide TFTs due to Electron Donation from Traps in High‐k Gate Dielectrics , 2016 .

[19]  E. Fortunato,et al.  Water‐Induced Scandium Oxide Dielectric for Low‐Operating Voltage n‐ and p‐Type Metal‐Oxide Thin‐Film Transistors , 2015 .

[20]  Steffen Meyer,et al.  Copper(I) Iodide as Hole‐Conductor in Planar Perovskite Solar Cells: Probing the Origin of J–V Hysteresis , 2015 .

[21]  Ruipeng Li,et al.  Highly efficient organic solar cells based on a robust room-temperature solution-processed copper iodide hole transporter , 2015 .

[22]  Bingqiang Cao,et al.  Effect of deposition temperature on transparent conductive properties of γ‐CuI film prepared by vacuum thermal evaporation , 2015 .

[23]  Elvira Fortunato,et al.  Low‐Temperature, Nontoxic Water‐Induced Metal‐Oxide Thin Films and Their Application in Thin‐Film Transistors , 2015 .

[24]  T. Alford,et al.  P3HT: PC61BM based solar cells employing solution processed copper iodide as the hole transport layer , 2015 .

[25]  T. Hirato,et al.  Electrical properties of CuI films prepared by spin coating , 2013 .

[26]  H. Alshareef,et al.  P-type Cu(2)O/SnO bilayer thin film transistors processed at low temperatures. , 2013, ACS applied materials & interfaces.

[27]  M. Grundmann,et al.  Cuprous iodide – a p‐type transparent semiconductor: history and novel applications , 2013 .

[28]  M. Grundmann,et al.  Cuprous iodide – a p‐type transparent semiconductor: history and novel applications (Phys. Status Solidi A 9∕2013) , 2013 .

[29]  Gerbrand Ceder,et al.  Identification and design principles of low hole effective mass p-type transparent conducting oxides , 2013, Nature Communications.

[30]  Stuart R. Thomas,et al.  Solution-processable metal oxide semiconductors for thin-film transistor applications. , 2013, Chemical Society reviews.

[31]  Thomas D. Anthopoulos,et al.  p-channel thin-film transistors based on spray-coated Cu2O films , 2013 .

[32]  A. Amassian,et al.  Electric field-induced hole transport in copper(I) thiocyanate (CuSCN) thin-films processed from solution at room temperature. , 2013, Chemical communications.

[33]  Yong Hun Kwon,et al.  p-Channel oxide thin film transistors using solution-processed copper oxide. , 2013, ACS applied materials & interfaces.

[34]  A. Amassian,et al.  Hole‐Transporting Transistors and Circuits Based on the Transparent Inorganic Semiconductor Copper(I) Thiocyanate (CuSCN) Processed from Solution at Room Temperature , 2013, Advanced materials.

[35]  J. Oh,et al.  Low-temperature, high-performance solution-processed thin-film transistors with peroxo-zirconium oxide dielectric. , 2013, ACS applied materials & interfaces.

[36]  Yong-Young Noh,et al.  Flexible metal-oxide devices made by room-temperature photochemical activation of sol–gel films , 2012, Nature.

[37]  Richard A. Brand,et al.  Solution-processed oxide semiconductor SnO in p-channel thin-film transistors , 2012 .

[38]  Jingbo Li,et al.  Native p-type transparent conductive CuI via intrinsic defects , 2011 .

[39]  Alberto Salleo,et al.  Room‐Temperature Fabrication of Ultrathin Oxide Gate Dielectrics for Low‐Voltage Operation of Organic Field‐Effect Transistors , 2011, Advanced materials.

[40]  X. Z. Zhao,et al.  Transparent conductive CuI thin films prepared by pulsed laser deposition , 2011 .

[41]  David P. Norton,et al.  Fabrication of p-channel thin-film transistors using CuO active layers deposited at low temperature , 2010 .

[42]  Pedro Barquinha,et al.  Thin-film transistors based on p-type Cu2O thin films produced at room temperature , 2010 .

[43]  Hideo Hosono,et al.  p-channel thin-film transistor using p-type oxide semiconductor, SnO , 2008 .

[44]  Masashi Kawasaki,et al.  p-type field-effect transistor of NiO with electric double-layer gating , 2008 .

[45]  H. Hosono Recent progress in transparent oxide semiconductors: Materials and device application , 2007 .

[46]  H. Ohta,et al.  Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors , 2004, Nature.

[47]  K. Tennakone,et al.  Deposition of thin conducting films of CuI on glass , 1998 .

[48]  Hideo Hosono,et al.  P-type electrical conduction in transparent thin films of CuAlO2 , 1997, Nature.

[49]  E. Fortunato,et al.  Oxide Semiconductor Thin‐Film Transistors: A Review of Recent Advances , 2012, Advanced materials.

[50]  H. Sirringhaus,et al.  Low-temperature, high-performance solution-processed metal oxide thin-film transistors formed by a ‘sol–gel on chip’ process. , 2011, Nature materials.

[51]  K. Baedeker Über die elektrische Leitfähigkeit und die thermoelektrische Kraft einiger Schwermetallverbindungen , 1907 .