Elastic Net Constraints for Shape Matching

We consider a parametrized relaxation of the widely adopted quadratic assignment problem (QAP) formulation for minimum distortion correspondence between deformable shapes. In order to control the accuracy/sparsity trade-off we introduce a weighting parameter on the combination of two existing relaxations, namely spectral and game-theoretic. This leads to the introduction of the elastic net penalty function into shape matching problems. In combination with an efficient algorithm to project onto the elastic net ball, we obtain an approach for deformable shape matching with controllable sparsity. Experiments on a standard benchmark confirm the effectiveness of the approach.

[1]  Leonidas J. Guibas,et al.  A Condition Number for Non‐Rigid Shape Matching , 2011, Computer Graphics Forum.

[2]  Daniel Cremers,et al.  Geometrically consistent elastic matching of 3D shapes: A linear programming solution , 2011, 2011 International Conference on Computer Vision.

[3]  Jon C. Dattorro,et al.  Convex Optimization & Euclidean Distance Geometry , 2004 .

[4]  Leonidas J. Guibas,et al.  SHREC 2010: robust correspondence benchmark , 2010 .

[5]  Alexander M. Bronstein,et al.  A game-theoretic approach to deformable shape matching , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[6]  Facundo Mémoli,et al.  Gromov–Wasserstein Distances and the Metric Approach to Object Matching , 2011, Found. Comput. Math..

[7]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[8]  Changshui Zhang,et al.  Efficient Euclidean projections via Piecewise Root Finding and its application in gradient projection , 2011, Neurocomputing.

[9]  Guillermo Sapiro,et al.  A Theoretical and Computational Framework for Isometry Invariant Recognition of Point Cloud Data , 2005, Found. Comput. Math..

[10]  Thomas A. Funkhouser,et al.  Möbius voting for surface correspondence , 2009, ACM Trans. Graph..

[11]  Nikos Paragios,et al.  Dense non-rigid surface registration using high-order graph matching , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[12]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[13]  Ron Kimmel,et al.  Generalized multidimensional scaling: A framework for isometry-invariant partial surface matching , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Guillermo Sapiro,et al.  Online Learning for Matrix Factorization and Sparse Coding , 2009, J. Mach. Learn. Res..

[15]  Steven Gold,et al.  A Graduated Assignment Algorithm for Graph Matching , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Iasonas Kokkinos,et al.  Scale-invariant heat kernel signatures for non-rigid shape recognition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[17]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[18]  Yoram Singer,et al.  Efficient Learning of Label Ranking by Soft Projections onto Polyhedra , 2006, J. Mach. Learn. Res..

[19]  Martial Hebert,et al.  A spectral technique for correspondence problems using pairwise constraints , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.