Frequency effects on fatigue crack growth behavior in a near-α titanium alloy

[1]  M. Sugano,et al.  Fatigue behavior of titanium in vacuum , 1989 .

[2]  M. Niinomi,et al.  Micromechanism of improvement in crack initiation and propagation toughness of a Ti–Al–Sn–Zr–Mo alloy by coarsening prior β-grains , 1988 .

[3]  D. Koss,et al.  Stage I fatigue crack propagation in a titanium alloy , 1988 .

[4]  P. J. Bania An Advanced Alloy for Elevated Temperatures , 1988 .

[5]  T. Gross,et al.  FRICTIONAL EFFECTS ON FATIGUE CRACK GROWTH IN β -ANNEALED Ti-6Al-4V , 1988 .

[6]  W. Plumbridge,et al.  Low cycle fatigue of a titanium 829 alloy , 1986 .

[7]  D. Eylon,et al.  Effects of dwell on high temperature low cycle fatigue of a titanium alloy , 1982 .

[8]  G. Yoder,et al.  On the effect of colony size on fatigue crack growth in Widmanstätten structure α+β titanium alloys , 1979 .

[9]  R. Ritchie,et al.  Optimization of the Electrical Potential Technique for Crack Growth Monitoring in Compact Test Pieces Using Finite Element Analysis , 1979 .

[10]  D. Eylon,et al.  Fatigue cracking characteristics of β-annealed large colony Ti-11 alloy , 1978 .

[11]  D. Eylon,et al.  Microstructure and mechanical properties relationships in the Ti-11 alloy at room and elevated temperatures , 1976 .

[12]  P. Irving,et al.  Microstructural influences on fatigue crack growth in Ti6Al4V , 1974 .

[13]  P. Irving,et al.  The effect of air and vacuum environments on fatigue crack growth rates in Ti-6Al-4V , 1974, Metallurgical and Materials Transactions B.

[14]  D. Duquette,et al.  The effect of environment on the mechanism of Stage I fatigue fracture , 1971, Metallurgical Transactions.

[15]  F. Haake,et al.  The effect of stress ratio on the near-threshold fatigue crack growth behavior of Ti-8A1-1Mo-1V at elevated temperature , 1989 .

[16]  R. Pippan,et al.  Comparison of two methods to measure crack closure in ultra-high vacuum , 1989 .

[17]  M. Pompetzki,et al.  A Comparison of Measurement Methods and Numerical Procedures for the Experimental Characterization of Fatigue Crack Closure , 1988 .

[18]  R. Ritchie,et al.  On the Role of Crack Closure Mechanisms in Influencing Fatigue Crack Growth Following Tensile Overloads in a Titanium Alloy: Near Threshold Versus Higher Δ K Behavior , 1988 .

[19]  C. Ward-Close,et al.  ΔK Thresholds in Titanium Alloys — the Role of Microstructure, Temperature and Environment , 1983 .

[20]  A. J. Mcevily,et al.  The Effect of Environment and Temperature on the Fatigue Behavior of Titanium Alloys , 1983 .

[21]  L. F. Coffin Overview of Temperature and Environmental Effects on Fatigue of Structural Metals , 1983 .