Data‐driven model reduction for the Bayesian solution of inverse problems

United States. Dept. of Energy. Office of Advanced Scientific Computing Research (Applied Mathematics Program Award DE-FG02-08ER2585)

[1]  Jun S. Liu,et al.  Monte Carlo strategies in scientific computing , 2001 .

[2]  Andrew M. Stuart,et al.  Inverse problems: A Bayesian perspective , 2010, Acta Numerica.

[3]  Karen Willcox,et al.  Parameter and State Model Reduction for Large-Scale Statistical Inverse Problems , 2010, SIAM J. Sci. Comput..

[4]  M. J. Bayarri,et al.  Predicting Vehicle Crashworthiness: Validation of Computer Models for Functional and Hierarchical Data , 2009 .

[5]  Stefan Volkwein,et al.  Proper orthogonal decomposition for optimality systems , 2008 .

[6]  N. Nguyen,et al.  An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations , 2004 .

[7]  C. Fox,et al.  Markov chain Monte Carlo Using an Approximation , 2005 .

[8]  L. Sirovich TURBULENCE AND THE DYNAMICS OF COHERENT STRUCTURES PART I : COHERENT STRUCTURES , 2016 .

[9]  James Martin,et al.  A Stochastic Newton MCMC Method for Large-Scale Statistical Inverse Problems with Application to Seismic Inversion , 2012, SIAM J. Sci. Comput..

[10]  David Galbally,et al.  Non‐linear model reduction for uncertainty quantification in large‐scale inverse problems , 2009 .

[11]  Marcus Meyer,et al.  Efficient model reduction in non-linear dynamics using the Karhunen-Loève expansion and dual-weighted-residual methods , 2003 .

[12]  S. S. Ravindran,et al.  Adaptive Reduced-Order Controllers for a Thermal Flow System Using Proper Orthogonal Decomposition , 2001, SIAM J. Sci. Comput..

[13]  E. Somersalo,et al.  Statistical and computational inverse problems , 2004 .

[14]  H. Haario,et al.  An adaptive Metropolis algorithm , 2001 .

[15]  Charbel Farhat,et al.  Nonlinear model order reduction based on local reduced‐order bases , 2012 .

[16]  J. Hesthaven,et al.  Reduced Basis Approximation and A Posteriori Error Estimation for Parametrized Partial Differential Equations , 2007 .

[17]  E. Sachs,et al.  Trust-region proper orthogonal decomposition for flow control , 2000 .

[18]  Maurizio Dapor Monte Carlo Strategies , 2020, Transport of Energetic Electrons in Solids.

[19]  L. Sirovich Turbulence and the dynamics of coherent structures. I. Coherent structures , 1987 .

[20]  Michael I. Miller,et al.  REPRESENTATIONS OF KNOWLEDGE IN COMPLEX SYSTEMS , 1994 .

[21]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[22]  M. Girolami,et al.  Riemann manifold Langevin and Hamiltonian Monte Carlo methods , 2011, Journal of the Royal Statistical Society: Series B (Statistical Methodology).

[23]  H. Haario,et al.  Markov chain Monte Carlo methods for high dimensional inversion in remote sensing , 2004 .

[24]  Benjamin Peherstorfer,et al.  Localized Discrete Empirical Interpolation Method , 2014, SIAM J. Sci. Comput..

[25]  Habib N. Najm,et al.  Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems , 2008, J. Comput. Phys..

[26]  Jari P. Kaipio,et al.  Electrical impedance tomography imaging with reduced-order model based on proper orthogonal decomposition , 2013, J. Electronic Imaging.

[27]  James O. Berger,et al.  Markov chain Monte Carlo-based approaches for inference in computationally intensive inverse problems , 2003 .

[28]  J. Rosenthal,et al.  Coupling and Ergodicity of Adaptive Markov Chain Monte Carlo Algorithms , 2007, Journal of Applied Probability.

[29]  Benjamin Stamm,et al.  Parameter multi‐domain ‘hp’ empirical interpolation , 2012 .

[30]  Habib N. Najm,et al.  Stochastic spectral methods for efficient Bayesian solution of inverse problems , 2005, J. Comput. Phys..

[31]  Karen Willcox,et al.  Model Reduction for Large-Scale Systems with High-Dimensional Parametric Input Space , 2008, SIAM J. Sci. Comput..

[32]  Danny C. Sorensen,et al.  Nonlinear Model Reduction via Discrete Empirical Interpolation , 2010, SIAM J. Sci. Comput..

[33]  Jun S. Liu,et al.  Sequential Monte Carlo methods for dynamic systems , 1997 .

[34]  Geoff K. Nicholls,et al.  Statistical inversion of South Atlantic circulation in an abyssal neutral density layer , 2005 .

[35]  Charbel Farhat,et al.  A Compact Proper Orthogonal Decomposition Basis for Optimization-Oriented Reduced-Order Models , 2008 .

[36]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[37]  Siep Weiland,et al.  Missing Point Estimation in Models Described by Proper Orthogonal Decomposition , 2004, IEEE Transactions on Automatic Control.

[38]  Bernard Haasdonk,et al.  A training set and multiple bases generation approach for parameterized model reduction based on adaptive grids in parameter space , 2011 .

[39]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[40]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[41]  Tiangang Cui,et al.  Bayesian calibration of geothermal reservoir models via Markov Chain Monte Carlo , 2010 .

[42]  Nicholas Zabaras,et al.  Using Bayesian statistics in the estimation of heat source in radiation , 2005 .

[43]  Tiangang Cui,et al.  Bayesian calibration of a large‐scale geothermal reservoir model by a new adaptive delayed acceptance Metropolis Hastings algorithm , 2011 .