Accelerating Asymptotically Exact MCMC for Computationally Intensive Models via Local Approximations

ABSTRACT We construct a new framework for accelerating Markov chain Monte Carlo in posterior sampling problems where standard methods are limited by the computational cost of the likelihood, or of numerical models embedded therein. Our approach introduces local approximations of these models into the Metropolis–Hastings kernel, borrowing ideas from deterministic approximation theory, optimization, and experimental design. Previous efforts at integrating approximate models into inference typically sacrifice either the sampler’s exactness or efficiency; our work seeks to address these limitations by exploiting useful convergence characteristics of local approximations. We prove the ergodicity of our approximate Markov chain, showing that it samples asymptotically from the exact posterior distribution of interest. We describe variations of the algorithm that employ either local polynomial approximations or local Gaussian process regressors. Our theoretical results reinforce the key observation underlying this article: when the likelihood has some local regularity, the number of model evaluations per Markov chain Monte Carlo (MCMC) step can be greatly reduced without biasing the Monte Carlo average. Numerical experiments demonstrate multiple order-of-magnitude reductions in the number of forward model evaluations used in representative ordinary differential equation (ODE) and partial differential equation (PDE) inference problems, with both synthetic and real data. Supplementary materials for this article are available online.

[1]  W. Cleveland Robust Locally Weighted Regression and Smoothing Scatterplots , 1979 .

[2]  A. V. Vecchia Estimation and model identification for continuous spatial processes , 1988 .

[3]  J. Freidman,et al.  Multivariate adaptive regression splines , 1991 .

[4]  Noel A Cressie,et al.  Statistics for Spatial Data. , 1992 .

[5]  J. Rosenthal Minorization Conditions and Convergence Rates for Markov Chain Monte Carlo , 1995 .

[6]  Noel A Cressie,et al.  Statistics for Spatial Data, Revised Edition. , 1994 .

[7]  R. Tweedie,et al.  Geometric convergence and central limit theorems for multidimensional Hastings and Metropolis algorithms , 1996 .

[8]  W. Cleveland,et al.  Smoothing by Local Regression: Principles and Methods , 1996 .

[9]  J. Collins,et al.  Construction of a genetic toggle switch in Escherichia coli , 2000, Nature.

[10]  Nicholas I. M. Gould,et al.  Trust Region Methods , 2000, MOS-SIAM Series on Optimization.

[11]  A. O'Hagan,et al.  Bayesian calibration of computer models , 2001 .

[12]  H. Haario,et al.  An adaptive Metropolis algorithm , 2001 .

[13]  A. P. Dawid,et al.  Gaussian Processes to Speed up Hybrid Monte Carlo for Expensive Bayesian Integrals , 2003 .

[14]  James O. Berger,et al.  Markov chain Monte Carlo-based approaches for inference in computationally intensive inverse problems , 2003 .

[15]  J. Rosenthal,et al.  General state space Markov chains and MCMC algorithms , 2004, math/0404033.

[16]  Zhiyi Chi,et al.  Approximating likelihoods for large spatial data sets , 2004 .

[17]  Andrew W. Moore,et al.  Locally Weighted Learning , 1997, Artificial Intelligence Review.

[18]  Dongbin Xiu,et al.  High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..

[19]  C. Fox,et al.  Markov chain Monte Carlo Using an Approximation , 2005 .

[20]  Yalchin Efendiev,et al.  Preconditioning Markov Chain Monte Carlo Simulations Using Coarse-Scale Models , 2006, SIAM J. Sci. Comput..

[21]  Habib N. Najm,et al.  Stochastic spectral methods for efficient Bayesian solution of inverse problems , 2005, J. Comput. Phys..

[22]  J. Rosenthal,et al.  Coupling and Ergodicity of Adaptive Markov Chain Monte Carlo Algorithms , 2007, Journal of Applied Probability.

[23]  E. Somersalo,et al.  Statistical inverse problems: discretization, model reduction and inverse crimes , 2007 .

[24]  Zoubin Ghahramani,et al.  Local and global sparse Gaussian process approximations , 2007, AISTATS.

[25]  Fabio Nobile,et al.  A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[26]  Stefan M. Wild,et al.  Bayesian Calibration and Uncertainty Analysis for Computationally Expensive Models Using Optimization and Radial Basis Function Approximation , 2008 .

[27]  C. Villani Optimal Transport: Old and New , 2008 .

[28]  Sven Hammarling,et al.  Updating the QR factorization and the least squares problem , 2008 .

[29]  Y. Marzouk,et al.  A stochastic collocation approach to Bayesian inference in inverse problems , 2009 .

[30]  David G. Lowe,et al.  Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration , 2009, VISAPP.

[31]  C. Andrieu,et al.  The pseudo-marginal approach for efficient Monte Carlo computations , 2009, 0903.5480.

[32]  R. Adler The Geometry of Random Fields , 2009 .

[33]  Karen Willcox,et al.  Surrogate and reduced-order modeling: a comparison of approaches for large-scale statistical inverse problems [Chapter 7] , 2010 .

[34]  Andrew M. Stuart,et al.  Approximation of Bayesian Inverse Problems for PDEs , 2009, SIAM J. Numer. Anal..

[35]  Karen Willcox,et al.  Parameter and State Model Reduction for Large-Scale Statistical Inverse Problems , 2010, SIAM J. Sci. Comput..

[36]  Sonja Kuhnt,et al.  Design and analysis of computer experiments , 2010 .

[37]  John L. Nazareth,et al.  Introduction to derivative-free optimization , 2010, Math. Comput..

[38]  Shie-Yui Liong,et al.  Efficient MCMC Schemes for Computationally Expensive Posterior Distributions , 2011, Technometrics.

[39]  G. Fort,et al.  Convergence of adaptive and interacting Markov chain Monte Carlo algorithms , 2011, 1203.3036.

[40]  Andrew M. Stuart,et al.  Uncertainty Quantification and Weak Approximation of an Elliptic Inverse Problem , 2011, SIAM J. Numer. Anal..

[41]  Tiangang Cui,et al.  Bayesian calibration of a large‐scale geothermal reservoir model by a new adaptive delayed acceptance Metropolis Hastings algorithm , 2011 .

[42]  Jean-Michel Marin,et al.  Approximate Bayesian computational methods , 2011, Statistics and Computing.

[43]  V. Roshan Joseph,et al.  Bayesian Computation Using Design of Experiments-Based Interpolation Technique , 2012, Technometrics.

[44]  Michael S. Eldred,et al.  Sparse Pseudospectral Approximation Method , 2011, 1109.2936.

[45]  Christine A. Shoemaker,et al.  Local Derivative-Free Approximation of Computationally Expensive Posterior Densities , 2012, Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America.

[46]  Regular Perturbation of V-Geometrically Ergodic Markov Chains , 2013, Journal of Applied Probability.

[47]  H. F. Stripling,et al.  Spline-Based Emulators for Radiative Shock Experiments With Measurement Error , 2013 .

[48]  G. Roberts,et al.  MCMC Methods for Functions: ModifyingOld Algorithms to Make Them Faster , 2012, 1202.0709.

[49]  Max Welling,et al.  Austerity in MCMC Land: Cutting the Metropolis-Hastings Budget , 2013, ICML 2014.

[50]  Youssef M. Marzouk,et al.  Adaptive Smolyak Pseudospectral Approximations , 2012, SIAM J. Sci. Comput..

[51]  Guillaume Bal,et al.  Bayesian inverse problems with Monte Carlo forward models , 2013 .

[52]  Daniel W. Apley,et al.  Local Gaussian Process Approximation for Large Computer Experiments , 2013, 1303.0383.

[53]  Patrick R. Conrad Accelerating Bayesian Inference in Computationally Expensive Computer Models Using Local and Global Approximations , 2014 .

[54]  Tiangang Cui,et al.  Data‐driven model reduction for the Bayesian solution of inverse problems , 2014, 1403.4290.

[55]  Jinglai Li,et al.  Adaptive Construction of Surrogates for the Bayesian Solution of Inverse Problems , 2013, SIAM J. Sci. Comput..

[56]  A. Stuart,et al.  Data Assimilation: A Mathematical Introduction , 2015, 1506.07825.

[57]  J. Doran,et al.  Data Assimilation , 2022 .