Constructive root bound for k-ary rational input numbers
暂无分享,去创建一个
[1] Hiroshi Sekigawa. Using Interval Computation with the Mahler Measure for Zero Determination of Algebraic Numbers , 1998 .
[2] Kurt Mehlhorn,et al. A Strong and Easily Computable Separation Bound for Arithmetic Expressions Involving Radicals , 2000, Algorithmica.
[3] G. Rota,et al. Finite operator calculus , 1975 .
[4] Maurice Mignotte,et al. Identification of Algebraic Numbers , 1982, J. Algorithms.
[5] Kurt Mehlhorn,et al. Efficient exact geometric computation made easy , 1999, SCG '99.
[6] Chee-Keng Yap,et al. Fundamental problems of algorithmic algebra , 1999 .
[7] Edward R. Scheinerman,et al. When Close Enough Is Close Enough , 2000, Am. Math. Mon..
[8] Kurt Mehlhorn,et al. A Separation Bound for Real Algebraic Expressions , 2001, ESA.
[9] Susanne Schmitt. Improved separation bounds for the diamond operator , 2004 .
[10] Chee-Keng Yap,et al. A new constructive root bound for algebraic expressions , 2001, SODA '01.
[11] Chee-Keng Yap,et al. A core library for robust numeric and geometric computation , 1999, SCG '99.
[12] Chen Li,et al. Exact Geometric Computation: Theory and Applications , 2001 .
[13] Chee Yap. On guaranteed accuracy computation , 2004 .
[14] D. Du,et al. Computing in Euclidean Geometry , 1995 .
[15] Kurt Mehlhorn,et al. Exact geometric computation made easy , 1999 .
[16] Chee Yap,et al. The exact computation paradigm , 1995 .
[17] I. M. Sheffer,et al. Review: Morris Marden, The geometry of the zeros of a polynomial in a complex variable , 1950 .