Nonparametric Copula Density Estimation in Sensor Networks

Statistical and machine learning is a fundamental task in sensor networks. Real world data almost always exhibit dependence among different features. Copulas are full measures of statistical dependence among random variables. Estimating the underlying copula density function from distributed data is an important aspect of statistical learning in sensor networks. With limited communication capacities or privacy concerns, centralization of the data is often impossible. By only collecting the ranks of the data observed by different sensors, we estimate and evaluate the copula density on an equally spaced grid after binning the standardized ranks at the fusion center. Without assuming any parametric forms of copula densities, we estimate them nonparametrically by maximum penalized likelihood estimation (MPLE) method with a Total Variation (TV) penalty. Linear equality and positivity constraints arise naturally as a consequence of marginal uniform densities of any copulas. Through local quadratic approximation to the likelihood function, the constrained TV-MPLE problem is cast as a sequence of corresponding quadratic optimization problems. A fast gradient based algorithm solves the constrained TV penalized quadratic optimization problem. Numerical experiments show that our algorithm can estimate the underlying copula density accurately.

[1]  M. Davy,et al.  Copulas: a new insight into positive time-frequency distributions , 2003, IEEE Signal Processing Letters.

[2]  Patrick L. Combettes,et al.  Image restoration subject to a total variation constraint , 2004, IEEE Transactions on Image Processing.

[3]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[4]  Christian Genest,et al.  Estimating copula densities through wavelets , 2009 .

[5]  Tariq S. Durrani,et al.  Copula based divergence measures and their use in image registration , 2009, 2009 17th European Signal Processing Conference.

[6]  T. Louis,et al.  Inferences on the association parameter in copula models for bivariate survival data. , 1995, Biometrics.

[7]  Ian F. Akyildiz,et al.  Sensor Networks , 2002, Encyclopedia of GIS.

[8]  Tony F. Chan,et al.  High-Order Total Variation-Based Image Restoration , 2000, SIAM J. Sci. Comput..

[9]  Pramod K. Varshney,et al.  A copula-based semi-parametric approach for footstep detection using seismic sensor networks , 2010, Defense + Commercial Sensing.

[10]  H. Vincent Poor,et al.  Distributed learning in wireless sensor networks , 2005, IEEE Signal Processing Magazine.

[11]  Pramod K. Varshney,et al.  Location Estimation of a Random Signal Source Based on Correlated Sensor Observations , 2011, IEEE Transactions on Signal Processing.

[12]  Yi Qian,et al.  Copula Density Estimation by Total Variation Penalized Likelihood , 2009, Commun. Stat. Simul. Comput..

[13]  Bill Ravens,et al.  An Introduction to Copulas , 2000, Technometrics.

[14]  Pravin K. Trivedi,et al.  Copula Modeling: An Introduction for Practitioners , 2007 .

[15]  Paul Embrechts,et al.  Copulas: A Personal View , 2009 .

[16]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[17]  Ali Mohammad-Djafari,et al.  Link between copula and tomography , 2010, Pattern Recognit. Lett..

[18]  R. Ibragimov,et al.  Copula Estimation , 2009 .

[19]  Thomas Mikosch,et al.  Copulas: Tales and facts , 2006 .

[20]  Yannick Berthoumieu,et al.  Copulas based multivariate gamma modeling for texture classification , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.

[21]  Natalie Neumeyer,et al.  Estimating a bivariate density when there are extra data on one or both components , 2006 .

[22]  Yannick Malevergne,et al.  Testing the Gaussian copula hypothesis for financial assets dependences , 2001, cond-mat/0111310.

[23]  Patrick L. Combettes,et al.  Signal Recovery by Proximal Forward-Backward Splitting , 2005, Multiscale Model. Simul..

[24]  E. Luciano,et al.  Copula Methods in Finance: Cherubini/Copula , 2004 .

[25]  S. Satchell,et al.  THE BERNSTEIN COPULA AND ITS APPLICATIONS TO MODELING AND APPROXIMATIONS OF MULTIVARIATE DISTRIBUTIONS , 2004, Econometric Theory.

[26]  R. Courant Variational methods for the solution of problems of equilibrium and vibrations , 1943 .

[27]  Emiliano A. Valdez,et al.  Understanding Relationships Using Copulas , 1998 .

[28]  N. Kolev,et al.  Copulas: A Review and Recent Developments , 2006 .

[29]  J. Moreau Proximité et dualité dans un espace hilbertien , 1965 .

[30]  Ashok Sundaresan,et al.  Copula-Based Fusion of Correlated Decisions , 2011, IEEE Transactions on Aerospace and Electronic Systems.

[31]  E. Luciano,et al.  Copula methods in finance , 2004 .

[32]  Gabriele Moser,et al.  Conditional Copulas for Change Detection in Heterogeneous Remote Sensing Images , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[33]  R. Nelsen An Introduction to Copulas , 1998 .

[34]  Junfeng Yang,et al.  A New Alternating Minimization Algorithm for Total Variation Image Reconstruction , 2008, SIAM J. Imaging Sci..

[35]  Stephen J. Wright,et al.  Sparse Reconstruction by Separable Approximation , 2008, IEEE Transactions on Signal Processing.

[36]  P. Embrechts,et al.  Chapter 8 – Modelling Dependence with Copulas and Applications to Risk Management , 2003 .

[37]  P. Embrechts,et al.  Risk Management: Correlation and Dependence in Risk Management: Properties and Pitfalls , 2002 .

[38]  Nicolas Brunel,et al.  Copulas in vectorial hidden Markov chains for multicomponent image segmentation , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[39]  Andrew J. Patton Copula-Based Models for Financial Time Series , 2009 .

[40]  Yunmin Zhu,et al.  Linear B-spline copulas with applications to nonparametric estimation of copulas , 2008, Comput. Stat. Data Anal..

[41]  O. Scaillet,et al.  Nonparametric Estimation of Copulas for Time Series , 2002 .

[42]  Pramod K. Varshney,et al.  A Parametric Copula-Based Framework for Hypothesis Testing Using Heterogeneous Data , 2011, IEEE Transactions on Signal Processing.

[43]  J. Mielniczuk,et al.  Estimating the density of a copula function , 1990 .

[44]  Ser-Huang Poon,et al.  Modelling International Stock Market Contagion Using Copula and Risk Appetite , 2007 .

[45]  J. C. Rodríguez,et al.  Measuring financial contagion:a copula approach , 2007 .

[46]  M. Nikolova An Algorithm for Total Variation Minimization and Applications , 2004 .

[47]  P. Morettin Nonparametric Estimation of Copulas for Time Series , 2007 .

[48]  Marc Teboulle,et al.  Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems , 2009, IEEE Transactions on Image Processing.

[49]  Erwan Le Pennec,et al.  Thresholding methods to estimate copula density , 2008, J. Multivar. Anal..

[50]  Marc Teboulle,et al.  Gradient-based algorithms with applications to signal-recovery problems , 2010, Convex Optimization in Signal Processing and Communications.

[51]  Markus Junker,et al.  Measurement of Aggregate Risk with Copulas , 2005 .

[52]  Wotao Yin,et al.  Copula density estimation by total variation penalized likelihood with linear equality constraints , 2012, Comput. Stat. Data Anal..

[53]  Dirk P. Kroese,et al.  Kernel density estimation via diffusion , 2010, 1011.2602.

[54]  BeckAmir,et al.  Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems , 2009 .

[55]  Salah Bourennane,et al.  Pearson-based mixture model for color object tracking , 2008, Machine Vision and Applications.

[56]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[57]  Yannick Malevergne,et al.  Testing the Gaussian copula hypothesis for financial assets dependences , 2001, cond-mat/0111310.