A framework: Cluster detection and multidimensional visualization of automated data mining using intelligent agents

Data Mining techniques plays a vital role like extraction of required knowledge, finding unsuspected information to make strategic decision in a novel way which in term understandable by domain experts. A generalized frame work is proposed by considering non - domain experts during mining process for better understanding, making better decision and better finding new patters in case of selecting suitable data mining techniques based on the user profile by means of intelligent agents. KEYWORDS: Data Mining Techniques, Intelligent Agents, User Profile, Multidimensional Visualization, Knowledge Discovery.

[1]  Michael J. A. Berry,et al.  Mastering Data Mining: The Art and Science of Customer Relationship Management , 1999 .

[2]  Eugene H. Spafford,et al.  Intrusion detection using autonomous agents , 2000, Comput. Networks.

[3]  Karl N. Levitt,et al.  Execution monitoring of security-critical programs in distributed systems: a specification-based approach , 1997, Proceedings. 1997 IEEE Symposium on Security and Privacy (Cat. No.97CB36097).

[4]  Frances M. T. Brazier,et al.  A method for decentralized clustering in large multi-agent systems , 2003, AAMAS '03.

[5]  Tijs Neutens,et al.  MamMoeT: An intelligent agent-based communication support platform for multimodal transport , 2009, Expert Syst. Appl..

[6]  Jacques Ferber,et al.  Multi-agent systems - an introduction to distributed artificial intelligence , 1999 .

[7]  Dennis DeCoste,et al.  Visualizing data mining models , 2001 .

[8]  Rui Xu,et al.  Survey of clustering algorithms , 2005, IEEE Transactions on Neural Networks.

[9]  Ali S. Hadi,et al.  Finding Groups in Data: An Introduction to Chster Analysis , 1991 .

[10]  A. Bertoni,et al.  A Review on clustering and visualization methodologies for Genomic data analysis , 2007 .

[11]  Neil C. Rowe,et al.  DISTRIBUTED INTRUSION DETECTION FOR COM-PUTER SYSTEMS USING COMMUNICATING AGENTS , 2000 .

[12]  Yiannis Aloimonos,et al.  Artificial intelligence - theory and practice , 1995 .

[13]  Ron Kohavi,et al.  Data Mining and Visualization , 2000 .

[14]  A. Giniatoulline,et al.  Essential spectrum of the operators generated by PDE systems of stratified fluids and Lp-estimates for the solutions , 2005, Int. J. Comput. Sci. Appl..

[15]  VUDA SREENIVASA RAO MULTI AGENT-BASED DISTRIBUTED DATA MINING : AN OVER VIEW , 2010 .

[16]  Eleni E. Mangina,et al.  Intelligent Agent-Based Monitoring Platform for Applications in Engineering , 2005, Int. J. Comput. Sci. Appl..

[17]  Ayse Yasemin Seydim INTELLIGENT AGENTS: A DATA MINING PERSPECTIVE , 2001 .

[18]  Marcos M. Campos,et al.  Data-centric automated data mining , 2005, Fourth International Conference on Machine Learning and Applications (ICMLA'05).

[19]  Ian Witten,et al.  Data Mining , 2000 .

[20]  Ben Shneiderman,et al.  Designing The User Interface , 2013 .

[21]  Richard A. Kemmerer,et al.  Penetration state transition analysis: A rule-based intrusion detection approach , 1992, [1992] Proceedings Eighth Annual Computer Security Application Conference.

[22]  George Karypis,et al.  Multilevel algorithms for partitioning power-law graphs , 2006, Proceedings 20th IEEE International Parallel & Distributed Processing Symposium.

[23]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[24]  Hing-Yan Lee,et al.  A multi-dimensional data visualization tool for knowledge discovery in databases , 1995, Proceedings Nineteenth Annual International Computer Software and Applications Conference (COMPSAC'95).

[25]  Le Gruenwald,et al.  A survey of data mining and knowledge discovery software tools , 1999, SKDD.

[26]  Matthias Klusch,et al.  Agent-Based Distributed Data Mining: The KDEC Scheme , 2003, AgentLink.

[27]  Hélène Paugam-Moisy,et al.  Cluster detection algorithm in neural networks , 2006, ESANN.

[28]  Stephen G. Eick Visualizing multi-dimensional data , 2000, SIGGRAPH 2000.

[29]  Byung-In Kim,et al.  Intelligent agent based framework for manufacturing systems control , 2002, IEEE Trans. Syst. Man Cybern. Part A.

[30]  Jiawei Han,et al.  Data Mining: Concepts and Techniques , 2000 .

[31]  Karl Rihaczek,et al.  1. WHAT IS DATA MINING? , 2019, Data Mining for the Social Sciences.

[32]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[33]  Guy Melançon,et al.  Evaluating the Quality of Clustering Algorithms Using Cluster Path Lengths , 2010, ICDM.

[34]  Jacques Calmet,et al.  Agent-Based Knowledge Communities , 2009, Int. J. Comput. Sci. Appl..

[35]  V. Saravanan,et al.  A Framework of an Automated Data Mining System Using Autonomous Intelligent Agents , 2008, 2008 International Conference on Computer Science and Information Technology.

[36]  Don Gilbert,et al.  Intelligent Agents: The Right Information at the Right Time , 1998 .

[37]  Giorgio Valentini,et al.  Discovering Significant Structures in Clustered Bio-molecular Data Through the Bernstein Inequality , 2007, KES.

[38]  Liviu Ionita,et al.  Intelligent Agents as Data Mining Techniques Used in Academic Environment , 2009 .

[39]  Chris Bowerman,et al.  Automated trend analysis of proteomics data using an intelligent data mining architecture , 2006, Expert Syst. Appl..

[40]  Erik Granum,et al.  Methods for visual mining of data in Virtual Reality , 2001 .

[41]  K. Vivekanandan,et al.  Design and Implementation of Automated Data Mining Using Intelligent Agents in Object Oriented Databases , 2004, Intelligent Information Processing.

[42]  Fabio A. González,et al.  CIDS: An agent-based intrusion detection system , 2005, Comput. Secur..

[43]  Nigel Robinson,et al.  Data mining information visualisation - beyond charts and graphs , 2002, Proceedings Sixth International Conference on Information Visualisation.