Temporal multimodal single-cell profiling of native hematopoiesis illuminates altered differentiation trajectories with age.

[1]  F. Camargo,et al.  Taz protects hematopoietic stem cells from an aging-dependent decrease in PU.1 activity , 2022, Nature Communications.

[2]  T. Bonald,et al.  Scarf enables a highly memory-efficient analysis of large-scale single-cell genomics data , 2022, Nature Communications.

[3]  J. Qu,et al.  Heterochronic parabiosis induces stem cell revitalization and systemic rejuvenation across aged tissues. , 2022, Cell stem cell.

[4]  D. Bryder,et al.  Stem Cells, Hematopoiesis and Lineage Tracing: Transplantation-Centric Views and Beyond , 2022, Frontiers in Cell and Developmental Biology.

[5]  E. Pietras,et al.  The Simplified MPP Isolation Scheme: establishing a consensus approach for multipotent progenitor identification. , 2021, Experimental hematology.

[6]  Rachel E. Brewer,et al.  Aged skeletal stem cells generate an inflammatory degenerative niche , 2021, Nature.

[7]  E. Passegué,et al.  Aged hematopoietic stem cells are refractory to bloodborne systemic rejuvenation interventions , 2021, The Journal of experimental medicine.

[8]  B. Göttgens,et al.  Stromal inflammation is a targetable driver of hematopoietic aging , 2021, bioRxiv.

[9]  James T. Webber,et al.  Molecular hallmarks of heterochronic parabiosis at single cell resolution , 2020, bioRxiv.

[10]  C. Nerlov,et al.  Micro-environmental sensing by bone marrow stroma identifies IL-6 and TGFβ1 as regulators of hematopoietic ageing , 2020, Nature Communications.

[11]  Thomas Höfer,et al.  Resolving Fates and Single-Cell Transcriptomes of Hematopoietic Stem Cell Clones by PolyloxExpress Barcoding. , 2020, Cell stem cell.

[12]  L. Bystrykh,et al.  A comprehensive transcriptome signature of murine hematopoietic stem cell aging , 2020, bioRxiv.

[13]  F. Ginhoux,et al.  Combinatorial Single-Cell Analyses of Granulocyte-Monocyte Progenitor Heterogeneity Reveals an Early Uni-potent Neutrophil Progenitor. , 2020, Immunity.

[14]  S. Orkin,et al.  An Engineered CRISPR-Cas9 Mouse Line for Simultaneous Readout of Lineage Histories and Gene Expression Profiles in Single Cells , 2020, Cell.

[15]  T. Höfer,et al.  Do haematopoietic stem cells age? , 2019, Nature Reviews Immunology.

[16]  C. López-Otín,et al.  Remodeling of Bone Marrow Hematopoietic Stem Cell Niches Promotes Myeloid Cell Expansion during Premature or Physiological Aging , 2019, Cell stem cell.

[17]  A. Wilkinson,et al.  Long-term ex vivo hematopoietic stem cell expansion affords nonconditioned transplantation , 2019, Nature.

[18]  Kornel Labun,et al.  CHOPCHOP v3: expanding the CRISPR web toolbox beyond genome editing , 2019, Nucleic Acids Res..

[19]  S. McKinney-Freeman,et al.  The global clonal complexity of the murine blood system declines throughout life and after serial transplantation. , 2019, Blood.

[20]  Sam Watcham,et al.  New insights into hematopoietic differentiation landscapes from single-cell RNA sequencing. , 2019, Blood.

[21]  Derrick J. Rossi,et al.  Murine HSCs contribute actively to native hematopoiesis but with reduced differentiation capacity upon aging , 2018, eLife.

[22]  R. Satija,et al.  Kinetics of adult hematopoietic stem cell differentiation in vivo , 2018, The Journal of experimental medicine.

[23]  I. Amit,et al.  Single-cell characterization of haematopoietic progenitors and their trajectories in homeostasis and perturbed haematopoiesis , 2018, Nature Cell Biology.

[24]  P. Frenette,et al.  Adrenergic nerve degeneration in bone marrow drives aging of the hematopoietic stem cell niche , 2018, Nature Medicine.

[25]  Berthold Göttgens,et al.  Critical Modulation of Hematopoietic Lineage Fate by Hepatic Leukemia Factor , 2017, Cell reports.

[26]  H. Swerdlow,et al.  Large-scale simultaneous measurement of epitopes and transcriptomes in single cells , 2017, Nature Methods.

[27]  Caleb Weinreb,et al.  Fundamental limits on dynamic inference from single-cell snapshots , 2017, Proceedings of the National Academy of Sciences.

[28]  Yutaka Inagaki,et al.  Easi-CRISPR: a robust method for one-step generation of mice carrying conditional and insertion alleles using long ssDNA donors and CRISPR ribonucleoproteins , 2017, Genome Biology.

[29]  H. Clevers,et al.  SCA-1 Expression Level Identifies Quiescent Hematopoietic Stem and Progenitor Cells , 2017, Stem cell reports.

[30]  I. Weissman,et al.  Clonal reversal of ageing-associated stem cell lineage bias via a pluripotent intermediate , 2017, Nature Communications.

[31]  V. Philip,et al.  Br Ief Definitive Repor T , 2022 .

[32]  Bruce J. Aronow,et al.  Single-cell analysis of mixed-lineage states leading to a binary cell fate choice , 2016, Nature.

[33]  D. Scadden,et al.  Non-genotoxic conditioning for hematopoietic stem cell transplantation using a hematopoietic-cell-specific internalizing immunotoxin , 2016, Nature Biotechnology.

[34]  C. Betsholtz,et al.  Age-dependent modulation of vascular niches for haematopoietic stem cells , 2016, Nature.

[35]  Alice Giustacchini,et al.  Distinct myeloid progenitor differentiation pathways identified through single cell RNA sequencing , 2016, Nature Immunology.

[36]  I. Macaulay,et al.  Single-cell RNA sequencing reveals molecular and functional platelet bias of aged haematopoietic stem cells , 2016, Nature Communications.

[37]  Derrick J. Rossi,et al.  Mitotic History Reveals Distinct Stem Cell Populations and Their Contributions to Hematopoiesis , 2016, Cell reports.

[38]  I. Amit,et al.  Transcriptional Heterogeneity and Lineage Commitment in Myeloid Progenitors , 2015, Cell.

[39]  Monika S. Kowalczyk,et al.  Single-cell RNA-seq reveals changes in cell cycle and differentiation programs upon aging of hematopoietic stem cells , 2015, Genome research.

[40]  Ole Winther,et al.  BloodSpot: a database of gene expression profiles and transcriptional programs for healthy and malignant haematopoiesis , 2015, Nucleic Acids Res..

[41]  Berthold Göttgens,et al.  Functionally Distinct Subsets of Lineage-Biased Multipotent Progenitors Control Blood Production in Normal and Regenerative Conditions. , 2015, Cell stem cell.

[42]  H. Goodridge,et al.  IRF8 acts in lineage-committed rather than oligopotent progenitors to control neutrophil vs monocyte production. , 2015, Blood.

[43]  D. Bryder,et al.  Concise Review: Hematopoietic Stem Cell Aging and the Prospects for Rejuvenation , 2015, Stem cells translational medicine.

[44]  M. L. Beau,et al.  Replication stress is a potent driver of functional decline in ageing haematopoietic stem cells , 2014, Nature.

[45]  Derrick J. Rossi,et al.  Fgd5 identifies hematopoietic stem cells in the murine bone marrow , 2014, The Journal of experimental medicine.

[46]  A. Regev,et al.  Transcriptome Analysis Identifies Regulators of Hematopoietic Stem and Progenitor Cells , 2013, Stem cell reports.

[47]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[48]  M. Gunzer,et al.  Cdc42 activity regulates hematopoietic stem cell aging and rejuvenation. , 2012, Cell stem cell.

[49]  Nathan C Boles,et al.  Rantes/Ccl5 influences hematopoietic stem cell subtypes and causes myeloid skewing. , 2012, Blood.

[50]  Christoph Waldner,et al.  Red fluorescent Xenopus laevis: a new tool for grafting analysis , 2009, BMC Developmental Biology.

[51]  P. Lio’,et al.  Hematopoietic Stem Cells Reversibly Switch from Dormancy to Self-Renewal during Homeostasis and Repair , 2008, Cell.

[52]  J. Cambier,et al.  Acquired hematopoietic stem cell defects determine B-cell repertoire changes associated with aging , 2008, Proceedings of the National Academy of Sciences.

[53]  David Bryder,et al.  Elucidation of the phenotypic, functional, and molecular topography of a myeloerythroid progenitor cell hierarchy. , 2007, Cell stem cell.

[54]  Kevin Eggan,et al.  Developmental reprogramming after chromosome transfer into mitotic mouse zygotes , 2007, Nature.

[55]  Shamit Soneji,et al.  Molecular evidence for hierarchical transcriptional lineage priming in fetal and adult stem cells and multipotent progenitors. , 2007, Immunity.

[56]  Reinhard Klein,et al.  WPRE-mediated enhancement of gene expression is promoter and cell line specific. , 2006, Gene.

[57]  C. Esmon,et al.  Endothelial protein C receptor (CD201) explicitly identifies hematopoietic stem cells in murine bone marrow. , 2006, Blood.

[58]  Hyeyoung Min,et al.  Effects of Aging on the Common Lymphoid Progenitor to Pro-B Cell Transition1 , 2006, The Journal of Immunology.

[59]  I. Weissman,et al.  Cell intrinsic alterations underlie hematopoietic stem cell aging. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[60]  Lina A. Thoren,et al.  Identification of Flt3+ Lympho-Myeloid Stem Cells Lacking Erythro-Megakaryocytic Potential A Revised Road Map for Adult Blood Lineage Commitment , 2005, Cell.

[61]  S. E. Jacobsen,et al.  Identification of Lin(-)Sca1(+)kit(+)CD34(+)Flt3- short-term hematopoietic stem cells capable of rapidly reconstituting and rescuing myeloablated transplant recipients. , 2005, Blood.

[62]  D. Allman,et al.  The Decline in B Lymphopoiesis in Aged Mice Reflects Loss of Very Early B-Lineage Precursors 1 , 2003, The Journal of Immunology.

[63]  Xi C. He,et al.  Transcriptional accessibility for genes of multiple tissues and hematopoietic lineages is hierarchically controlled during early hematopoiesis. , 2003, Blood.

[64]  S. Jacobsen,et al.  Upregulation of Flt3 expression within the bone marrow Lin(-)Sca1(+)c-kit(+) stem cell compartment is accompanied by loss of self-renewal capacity. , 2001, Immunity.

[65]  H. Nakauchi,et al.  Age-Associated Characteristics of Murine Hematopoietic Stem Cells , 2000, The Journal of experimental medicine.

[66]  I. Weissman,et al.  Identification of Clonogenic Common Lymphoid Progenitors in Mouse Bone Marrow , 1997, Cell.

[67]  I. Weissman,et al.  The aging of hematopoietic stem cells , 1996, Nature Medicine.

[68]  Rudolf Jaenisch,et al.  Analysis of histone 2B-GFP retention reveals slowly cycling hematopoietic stem cells , 2009, Nature Biotechnology.