Nonuniformly hyperbolic K-systems are Bernoulli
暂无分享,去创建一个
[1] Ja B Pesin. GEODESIC FLOWS ON CLOSED RIEMANNIAN MANIFOLDS WITHOUT FOCAL POINTS , 1977 .
[2] D. Ornstein. Bernoulli shifts with the same entropy are isomorphic , 1970 .
[3] Anatole Katok,et al. Invariant Manifolds, Entropy and Billiards: Smooth Maps With Singularities , 1986 .
[4] Yitzhak Katzenlson. Ergodic automorphisms ofTn are Bernoulli shifts , 1971 .
[5] Y. Pesin. CHARACTERISTIC LYAPUNOV EXPONENTS AND SMOOTH ERGODIC THEORY , 1977 .
[6] V. I. Oseledec. A multiplicative ergodic theorem: Lyapunov characteristic num-bers for dynamical systems , 1968 .
[7] Imbedding Bernoulli shifts in flows , 1970 .
[8] D. Ornstein. Two Bernoulli shifts with infinite entropy are isomorphic , 1970 .
[9] R. Markarian. Billiards with Pesin region of measure one , 1988 .
[10] L. Bunimovich,et al. Markov Partitions for dispersed billiards , 1980 .
[11] Maciej P. Wojtkowski,et al. Principles for the design of billiards with nonvanishing Lyapunov exponents , 1986, Hamiltonian Dynamical Systems.
[12] N. Chernov,et al. Limit theorems and Markov approximations for chaotic dynamical systems , 1995 .
[13] Rufus Bowen,et al. Bernoulli maps of the interval , 1977 .
[14] Leonid A. Bunimovich,et al. Statistical properties of two-dimensional hyperbolic billiards , 1991 .
[15] Halim Doss. Sur une Resolution Stochastique de l'Equation de Schrödinger à Coefficients Analytiques , 1980 .
[16] D. Ornstein,et al. Statistical properties of chaotic systems , 1991 .
[17] D. Szász. Ergodicity of classical billiard balls , 1993 .
[18] Haruo Totoki. On a class of special flows , 1970 .
[19] F. Ledrappier. Some properties of absolutely continuous invariant measures on an interval , 1981, Ergodic Theory and Dynamical Systems.
[20] L. Sucheston. Contributions to Ergodic Theory and Probability , 1970 .
[21] Yakov G. Sinai,et al. Ergodic properties of certain systems of two-dimensional discs and three-dimensional balls , 1987 .
[22] L. A. Bunimovic. ON A CLASS OF SPECIAL FLOWS , 1974 .
[23] Perturbed billiard systems. II. Bernoulli properties , 1981 .
[24] M. Ratner,et al. Anosov flows with gibbs measures are also Bernoullian , 1974 .
[25] S. Kakutani,et al. Structure and continuity of measurable flows , 1942 .
[26] Domokos Szász. On theK-property of some planar hyperbolic billiards , 1992 .
[27] M. Denker. The central limit theorem for dynamical systems , 1989 .
[28] Y. Sinai,et al. Dynamical systems with elastic reflections , 1970 .
[29] N. Chernov. Statistical properties of the periodic Lorentz gas. Multidimensional case , 1994 .
[30] N. Chernov. New proof of Sinai's formula for the entropy of hyperbolic billiard systems. Application to Lorentz gases and Bunimovich stadiums , 1991 .
[31] M. Ratner. Bernoulliflows over maps of the interval , 1978 .
[32] Benjamin Weiss,et al. Geodesic flows are Bernoullian , 1973 .
[33] β-automorphisms are Bernoulli shifts , 1973 .
[34] Ergodic automorphisms of the infinite torus are bernoulli , 1974 .
[35] Giovanni Gallavotti,et al. Billiards and Bernoulli schemes , 1974 .
[36] L. Bunimovich. On the ergodic properties of nowhere dispersing billiards , 1979 .