Nonuniformly hyperbolic K-systems are Bernoulli

We prove that those non-uniformly hyperbolic maps and flows (with singularities) that enjoy the K-property are also Bernoulli. In particular, many billiard systems, including those systems of hard balls and stadia that have the K-property, and hyperbolic billiards, such as the Lorentz gas in any dimension, are Bernoulli. We obtain the Bernoulli property for both the billiard flows and the associated maps on the boundary of the phase space.

[1]  Ja B Pesin GEODESIC FLOWS ON CLOSED RIEMANNIAN MANIFOLDS WITHOUT FOCAL POINTS , 1977 .

[2]  D. Ornstein Bernoulli shifts with the same entropy are isomorphic , 1970 .

[3]  Anatole Katok,et al.  Invariant Manifolds, Entropy and Billiards: Smooth Maps With Singularities , 1986 .

[4]  Yitzhak Katzenlson Ergodic automorphisms ofTn are Bernoulli shifts , 1971 .

[5]  Y. Pesin CHARACTERISTIC LYAPUNOV EXPONENTS AND SMOOTH ERGODIC THEORY , 1977 .

[6]  V. I. Oseledec A multiplicative ergodic theorem: Lyapunov characteristic num-bers for dynamical systems , 1968 .

[7]  Imbedding Bernoulli shifts in flows , 1970 .

[8]  D. Ornstein Two Bernoulli shifts with infinite entropy are isomorphic , 1970 .

[9]  R. Markarian Billiards with Pesin region of measure one , 1988 .

[10]  L. Bunimovich,et al.  Markov Partitions for dispersed billiards , 1980 .

[11]  Maciej P. Wojtkowski,et al.  Principles for the design of billiards with nonvanishing Lyapunov exponents , 1986, Hamiltonian Dynamical Systems.

[12]  N. Chernov,et al.  Limit theorems and Markov approximations for chaotic dynamical systems , 1995 .

[13]  Rufus Bowen,et al.  Bernoulli maps of the interval , 1977 .

[14]  Leonid A. Bunimovich,et al.  Statistical properties of two-dimensional hyperbolic billiards , 1991 .

[15]  Halim Doss Sur une Resolution Stochastique de l'Equation de Schrödinger à Coefficients Analytiques , 1980 .

[16]  D. Ornstein,et al.  Statistical properties of chaotic systems , 1991 .

[17]  D. Szász Ergodicity of classical billiard balls , 1993 .

[18]  Haruo Totoki On a class of special flows , 1970 .

[19]  F. Ledrappier Some properties of absolutely continuous invariant measures on an interval , 1981, Ergodic Theory and Dynamical Systems.

[20]  L. Sucheston Contributions to Ergodic Theory and Probability , 1970 .

[21]  Yakov G. Sinai,et al.  Ergodic properties of certain systems of two-dimensional discs and three-dimensional balls , 1987 .

[22]  L. A. Bunimovic ON A CLASS OF SPECIAL FLOWS , 1974 .

[23]  Perturbed billiard systems. II. Bernoulli properties , 1981 .

[24]  M. Ratner,et al.  Anosov flows with gibbs measures are also Bernoullian , 1974 .

[25]  S. Kakutani,et al.  Structure and continuity of measurable flows , 1942 .

[26]  Domokos Szász On theK-property of some planar hyperbolic billiards , 1992 .

[27]  M. Denker The central limit theorem for dynamical systems , 1989 .

[28]  Y. Sinai,et al.  Dynamical systems with elastic reflections , 1970 .

[29]  N. Chernov Statistical properties of the periodic Lorentz gas. Multidimensional case , 1994 .

[30]  N. Chernov New proof of Sinai's formula for the entropy of hyperbolic billiard systems. Application to Lorentz gases and Bunimovich stadiums , 1991 .

[31]  M. Ratner Bernoulliflows over maps of the interval , 1978 .

[32]  Benjamin Weiss,et al.  Geodesic flows are Bernoullian , 1973 .

[33]  β-automorphisms are Bernoulli shifts , 1973 .

[34]  Ergodic automorphisms of the infinite torus are bernoulli , 1974 .

[35]  Giovanni Gallavotti,et al.  Billiards and Bernoulli schemes , 1974 .

[36]  L. Bunimovich On the ergodic properties of nowhere dispersing billiards , 1979 .