Contourlet based seismic reflection data non-local noise suppression

Abstract In this paper, we propose a non-local, transform domain noise suppression framework to improve the quality of seismic reflection data. The original non-local means (NLM) algorithm measures similarities in the data domain and we generalize it in the nonsubsampled contourlet transform (NSCT) domain. NSCT gives a multiscale, multiresolution and anisotropy representation of the noisy input. The redundancy information in NSCT subbands can be utilized to enhance the structures in the original seismic data. Like the wavelet transform, NSCT coefficients in each subband follow the generalized Gaussian distribution and the parameters can be estimated using appropriate techniques. These parameters are used to construct our proposed NSCT domain filtering algorithm. Applications for synthetic and real seismic data of the proposed algorithm demonstrate its effectiveness on seismic data random noise suppression.

[1]  Jérôme Darbon,et al.  Fast nonlocal filtering applied to electron cryomicroscopy , 2008, 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[2]  Alan H. Greenaway,et al.  An adaptive non-local means filter for denoising live-cell images and improving particle detection , 2010, Journal of structural biology.

[3]  Nikos Paragios,et al.  Image Denoising Based on Adapted Dictionary Computation , 2007, 2007 IEEE International Conference on Image Processing.

[4]  Minh N. Do,et al.  Ieee Transactions on Image Processing the Contourlet Transform: an Efficient Directional Multiresolution Image Representation , 2022 .

[5]  L. Canales Random Noise Reduction , 1984 .

[6]  D. Donoho,et al.  Does median filtering truly preserve edges better than linear filtering , 2006, math/0612422.

[7]  Minh N. Do,et al.  The Nonsubsampled Contourlet Transform: Theory, Design, and Applications , 2006, IEEE Transactions on Image Processing.

[8]  Roberto Manduchi,et al.  Bilateral filtering for gray and color images , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[9]  S. M. Doherty,et al.  Seismic Data Analysis: Processing, Inversion, and Interpretation of Seismic Data , 2000 .

[10]  Alberto Leon-Garcia,et al.  Estimation of shape parameter for generalized Gaussian distributions in subband decompositions of video , 1995, IEEE Trans. Circuits Syst. Video Technol..

[11]  M. Varanasi,et al.  Parametric generalized Gaussian density estimation , 1989 .

[12]  Azeddine Beghdadi,et al.  Image Denoising in the Transformed Domain Using Non Local Neighborhoods , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[13]  B. R. Hunt,et al.  Karhunen-Loeve multispectral image restoration, part I: Theory , 1984 .

[14]  Jean-Michel Morel,et al.  A non-local algorithm for image denoising , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[15]  Jianwei Ma,et al.  Comparisons of wavelets, contourlets and curvelets in seismic denoising , 2009 .

[16]  Ran Tao,et al.  Nonlocal Patch Functional Minimization for Image Denoising Using Nonsubsampled Contourlet , 2011, 2011 First International Conference on Instrumentation, Measurement, Computer, Communication and Control.

[17]  B. Erickson,et al.  Comparative study of two image space noise reduction methods for computed tomography: Bilateral filter and nonlocal means , 2009, 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[18]  M. Sacchi,et al.  Simultaneous seismic data denoising and reconstruction via multichannel singular spectrum analysis , 2011 .

[19]  Rachid Deriche,et al.  Impact of Rician Adapted Non-Local Means Filtering on HARDI , 2008, MICCAI.

[20]  Minh N. Do,et al.  Wavelet-based texture retrieval using generalized Gaussian density and Kullback-Leibler distance , 2002, IEEE Trans. Image Process..

[21]  Michael Elad,et al.  Generalizing the Nonlocal-Means to Super-Resolution Reconstruction , 2009, IEEE Transactions on Image Processing.

[22]  É. Stutzmann,et al.  Using instantaneous phase coherence for signal extraction from ambient noise data at a local to a global scale , 2011 .

[23]  Licheng Jiao,et al.  A Non-Local Means Filter with Translating Invariant Shearlet Feature Descriptors , 2010, 2010 6th International Conference on Wireless Communications Networking and Mobile Computing (WiCOM).

[24]  José V. Manjón,et al.  MRI denoising using Non-Local Means , 2008, Medical Image Anal..

[25]  Emmanuel J. Candès,et al.  The curvelet transform for image denoising , 2002, IEEE Trans. Image Process..

[26]  Alfredo Mazzotti,et al.  Stacking weights determination by means of SVD and cross-correlation , 1998 .

[27]  Mauricio D. Sacchi,et al.  Denoising seismic data using the nonlocal means algorithm , 2012 .