A multi-patch nonsingular isogeometric boundary element method using trimmed elements

One of the major goals of isogeometric analysis is direct design-to-analysis, i.e., using computer-aided design (CAD) files for analysis without the need for mesh generation. One of the primary obstacles to achieving this goal is CAD models are based on surfaces, and not volumes. The boundary element method (BEM) circumvents this difficulty by directly working with the surfaces. The standard basis functions in CAD are trimmed nonuniform rational B-spline (NURBS). NURBS patches are the tensor product of one-dimensional NURBS, making the construction of arbitrary surfaces difficult. Trimmed NURBS use curves to trim away regions of the patch to obtain the desired shape. By coupling trimmed NURBS with a nonsingular BEM, the formulation proposed here comes close achieving the goal of direct design to analysis. Example calculations demonstrate its efficiency and accuracy.

[1]  Barbara Wohlmuth,et al.  Isogeometric mortar methods , 2014, 1407.8313.

[2]  T. Belytschko,et al.  X‐FEM in isogeometric analysis for linear fracture mechanics , 2011 .

[3]  Sung-Kie Youn,et al.  Isogeometric analysis with trimming technique for problems of arbitrary complex topology , 2010 .

[4]  Ernst Rank,et al.  Weak coupling for isogeometric analysis of non-matching and trimmed multi-patch geometries , 2014 .

[5]  Peter Wriggers,et al.  Three-dimensional mortar-based frictional contact treatment in isogeometric analysis with NURBS , 2012 .

[6]  T. Hughes,et al.  Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes , 2010 .

[7]  Kang Li,et al.  Isogeometric analysis and shape optimization via boundary integral , 2011, Comput. Aided Des..

[8]  Norio Kamiya,et al.  Distance transformation for the numerical evaluation of near singular boundary integrals with various kernels in boundary element method , 2002 .

[9]  Gernot Beer,et al.  The Boundary Element Method with Programming: For Engineers and Scientists , 2008 .

[10]  Sung-Kie Youn,et al.  Isogeometric topology optimization using trimmed spline surfaces , 2010 .

[11]  Guangyao Li,et al.  An improved exponential transformation for nearly singular boundary element integrals in elasticity problems , 2014 .

[12]  David Elliott,et al.  A sinh transformation for evaluating nearly singular boundary element integrals , 2005 .

[13]  Carlos Alberto Brebbia,et al.  The Boundary Element Method for Engineers , 1978 .

[14]  Frank J. Rizzo,et al.  An advanced boundary integral equation method for three‐dimensional thermoelasticity , 1977 .

[15]  James H. Kane,et al.  Reusable intrinsic sample point (RISP) algorithm for the efficient numerical integration of three dimensional curved boundary elements , 1989 .

[16]  Wenjing Ye,et al.  A new transformation technique for evaluating nearly singular integrals , 2008 .

[17]  David J. Benson,et al.  Multi-patch nonsingular isogeometric boundary element analysis in 3D , 2015 .

[18]  Gang Wang,et al.  An adaptive dual-information FMBEM for 3D elasticity and its GPU implementation , 2013 .

[19]  Marlon Franke,et al.  Isogeometric Analysis and thermomechanical Mortar contact problems , 2014 .

[20]  R. Cárdenas NURBS-Enhanced Finite Element Method (NEFEM) , 2009 .

[21]  John A. Evans,et al.  Isogeometric boundary element analysis using unstructured T-splines , 2013 .

[22]  J. Trevelyan,et al.  Extended isogeometric boundary element method (XIBEM) for two-dimensional Helmholtz problems , 2013 .

[23]  T. Takahashi,et al.  An application of fast multipole method to isogeometric boundary element method for Laplace equation in two dimensions , 2012 .

[24]  Massimo Guiggiani,et al.  A General Algorithm for Multidimensional Cauchy Principal Value Integrals in the Boundary Element Method , 1990 .

[25]  Thomas J. R. Hughes,et al.  A large deformation, rotation-free, isogeometric shell , 2011 .

[26]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[27]  Thomas J. R. Hughes,et al.  Isogeometric Analysis for Topology Optimization with a Phase Field Model , 2012 .

[28]  Yuri Bazilevs,et al.  Rotation free isogeometric thin shell analysis using PHT-splines , 2011 .

[29]  Ping Wang,et al.  Adaptive isogeometric analysis using rational PHT-splines , 2011, Comput. Aided Des..

[30]  Yijun Liu,et al.  Some identities for fundamental solutions and their applications to weakly-singular boundary element formulations , 1991 .

[31]  Xiao-Wei Gao,et al.  The radial integration method for evaluation of domain integrals with boundary-only discretization , 2002 .

[32]  I. Akkerman,et al.  Isogeometric analysis of free-surface flow , 2011, J. Comput. Phys..

[33]  John A. Evans,et al.  An Isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces , 2012 .

[34]  J. Watson,et al.  Effective numerical treatment of boundary integral equations: A formulation for three‐dimensional elastostatics , 1976 .

[35]  F. Rizzo,et al.  A General Algorithm for the Numerical Solution of Hypersingular Boundary Integral Equations , 1992 .

[36]  Ahmad H. Nasri,et al.  T-splines and T-NURCCs , 2003, ACM Trans. Graph..

[37]  B. Yun A generalized non‐linear transformation for evaluating singular integrals , 2006 .

[38]  Hongping Zhu,et al.  The distance sinh transformation for the numerical evaluation of nearly singular integrals over curved surface elements , 2013, Computational Mechanics.

[39]  Hendrik Speleers,et al.  From NURBS to NURPS geometries , 2013 .

[40]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .

[41]  Y. Liu On the simple-solution method and non-singular nature of the BIE / BEM Ð a review and some new results , 2000 .

[42]  Yijun Liu,et al.  New identities for fundamental solutions and their applications to non-singular boundary element formulations , 1999 .

[43]  Yuri Bazilevs,et al.  Aerodynamic and FSI Analysis of Wind Turbines with the ALE-VMS and ST-VMS Methods , 2014 .

[44]  J. Telles A self-adaptive co-ordinate transformation for efficient numerical evaluation of general boundary element integrals , 1987 .

[45]  L. Heltai,et al.  Nonsingular isogeometric boundary element method for Stokes flows in 3D , 2014 .

[46]  Huanlin Zhou,et al.  A semi-analytical algorithm for the evaluation of the nearly singular integrals in three-dimensional boundary element methods , 2005 .

[47]  Peter Wriggers,et al.  A large deformation frictional contact formulation using NURBS‐based isogeometric analysis , 2011 .

[48]  T. Hughes,et al.  Local refinement of analysis-suitable T-splines , 2012 .

[49]  Tg Davies,et al.  Boundary Element Programming in Mechanics , 2002 .

[50]  Cv Clemens Verhoosel,et al.  A phase-field description of dynamic brittle fracture , 2012 .

[51]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[52]  Guangyao Li,et al.  Isogeometric analysis in BIE for 3-D potential problem , 2012 .

[53]  Hua Xu,et al.  Graphics processing unit (GPU) accelerated fast multipole BEM with level-skip M2L for 3D elasticity problems , 2015, Adv. Eng. Softw..

[54]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[55]  T. Rabczuk,et al.  A two-dimensional Isogeometric Boundary Element Method for elastostatic analysis , 2012 .

[56]  Giancarlo Sangalli,et al.  Isogeometric methods for computational electromagnetics: B-spline and T-spline discretizations , 2012, J. Comput. Phys..

[57]  Xiao-Wei Gao,et al.  An effective method for numerical evaluation of general 2D and 3D high order singular boundary integrals , 2010 .

[58]  Y. Bazilevs,et al.  Weakly enforced essential boundary conditions for NURBS‐embedded and trimmed NURBS geometries on the basis of the finite cell method , 2013 .

[59]  I. Temizer,et al.  A mixed formulation of mortar-based frictionless contact , 2012 .

[60]  Hendrik Speleers,et al.  Isogeometric analysis with Powell–Sabin splines for advection–diffusion–reaction problems , 2012 .

[61]  John A. Evans,et al.  Isogeometric finite element data structures based on Bézier extraction of NURBS , 2011 .

[62]  Hyun-Jung Kim,et al.  Isogeometric analysis for trimmed CAD surfaces , 2009 .

[63]  Ju Liu,et al.  Isogeometric analysis of the advective Cahn-Hilliard equation: Spinodal decomposition under shear flow , 2013, J. Comput. Phys..

[64]  Evert Klaseboer,et al.  A note on true desingularisation of boundary integral methods for three-dimensional potential problems , 2009 .

[65]  Xiaoping Qian,et al.  Full analytical sensitivities in NURBS based isogeometric shape optimization , 2010 .

[66]  E. Klaseboer,et al.  Non-singular boundary integral methods for fluid mechanics applications , 2012, Journal of Fluid Mechanics.

[67]  B. Simeon,et al.  A hierarchical approach to adaptive local refinement in isogeometric analysis , 2011 .

[68]  P. K. Banerjee,et al.  Boundary element methods in engineering science , 1981 .

[69]  Yuri Bazilevs,et al.  Isogeometric rotation-free bending-stabilized cables: Statics, dynamics, bending strips and coupling with shells , 2013 .

[70]  Yuri Bazilevs,et al.  Fluid–structure interaction modeling of wind turbines: simulating the full machine , 2012, Computational Mechanics.

[71]  P. N. Godbole Introduction to Finite Element Methods , 2013 .

[72]  Vinh Phu Nguyen,et al.  Nitsche’s method for two and three dimensional NURBS patch coupling , 2013, 1308.0802.

[73]  Jean B. Lasserre,et al.  Integration on a convex polytope , 1998 .

[74]  Huanlin Zhou,et al.  Analytical integral algorithm applied to boundary layer effect and thin body effect in BEM for anisotropic potential problems , 2008 .

[75]  David J. Benson,et al.  On the numerical integration of trimmed isogeometric elements , 2015 .

[76]  Yuri Bazilevs,et al.  Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines , 2012 .

[77]  Thomas J. R. Hughes,et al.  Isogeometric boundary-element analysis for the wave-resistance problem using T-splines , 2014 .

[78]  Thomas J. R. Hughes,et al.  Blended isogeometric shells , 2013 .

[79]  Zhengdong Huang,et al.  Isogeometric analysis for compound B-spline surfaces , 2013 .

[80]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[81]  Thomas J. R. Hughes,et al.  Isogeometric shell analysis: The Reissner-Mindlin shell , 2010 .

[82]  Hideyuki Azegami,et al.  Shape optimization of continua using NURBS as basis functions , 2013 .