Phylogeny Study of 20 Selected Species of Zingiberaceae from Ex situ Collections in Peninsular Malaysia

Zingiberaceae is widely distributed in Malaysia, with 750 species and 31 genera. This family comprises a different number of subfamilies and genera according to different taxonomic classification methods — classical taxonomy: one subfamily and four tribes vs molecular taxonomy: four subfamilies and six tribes. However, the taxonomic classification of Zingiberaceae is still debated, especially the classical taxonomy. It is due to some Zingiberaceae species showing cryptic morphologies that make it difficult to classify them through classical taxonomy, which refers to the unique morphological characteristics of a tribe/species. Therefore, accurate taxonomic classification is required by using a molecular approach. In this study, 20 selected species of Zingiberaceae collected from the Agricultural Conservatory Park, Institute of Bioscience (IBS), Universiti Putra Malaysia (UPM) were taxonomically classified using a molecular method with the help of three random amplified polymorphic DNA (RAPD) and three inter simple sequence repeat (ISSR) markers until the tribe level. The combined RAPD and ISSR unweighted pair group method with arithmetic mean (UPGMA) phylogenetic tree was comparable to Zingiberaceae’s current molecular and classical taxonomy. The 20 selected species were grouped into three tribes (Alpinieae, Zingiberaceae, and Globbeae). This finding has contributed additional biological information to better manage the 20 Zingiberaceae species in the Agricultural Conservatory Park, IBS, UPM. Further studies are needed to explore the genetic diversities and properties of Zingiberaceae species.

[1]  A. Poulsen,et al.  A new species and a new combination of Sundamomum (Zingiberaceae) from Sarawak, Borneo , 2020, Kew bulletin.

[2]  M. Zahara Identification of morphological and stomatal characteristics of Zingiberaceae as medicinal plants in Banda Aceh, Indonesia , 2020, IOP Conference Series: Earth and Environmental Science.

[3]  L. Prince,et al.  Three new species of Boesenbergia (Zingiberaceae) from Thailand and Lao P.D.R. , 2019 .

[4]  G. J. Sharma,et al.  Chromosome numbers, RAPD and ISSR profiles of six Zingiber species found in Manipur, India , 2019, Biodiversitas Journal of Biological Diversity.

[5]  M. Lal,et al.  Molecular diversity assessed amongst high dry rhizome recovery Ginger germplasm (Zingiber officinale Roscoe) from NE-India using RAPD and ISSR markers , 2019, Industrial Crops and Products.

[6]  K. Meekiong,et al.  Amomum bungoensis: A New Species of Amomum (Zingiberaceae) from Sarawak, Malaysia , 2018, Journal of Botany.

[7]  L. Hapsari,et al.  Short communication: A new record of Etlingera megalocheilos (Griff.) A.D. Poulsen (Zingiberaceae) in Sulawesi, Indonesia , 2018, Biodiversitas Journal of Biological Diversity.

[8]  M. Kalu,et al.  A review of Scaphochlamys (Zingiberaceae) from borneo, with description of eleven new species , 2017 .

[9]  R. Joshi,et al.  EST-SSR marker revealed effective over biochemical and morphological scepticism towards identification of specific turmeric (Curcuma longa L.) cultivars , 2017, 3 Biotech.

[10]  L. Rangan,et al.  Assessment of genetic variation among nineteen turmeric cultivars of Northeast India: nuclear DNA content and molecular marker approach , 2017, Acta Physiologiae Plantarum.

[11]  G. Miah,et al.  Molecular markers: a potential resource for ginger genetic diversity studies , 2016, Molecular Biology Reports.

[12]  R. Sinha,et al.  ISSR Fingerprinting to Ascertain the Genetic Relationship of Curcuma sp. of Tripura , 2016 .

[13]  I. A. Adedara,et al.  Dietary supplementation of ginger and turmeric improves reproductive function in hypertensive male rats , 2015, Toxicology reports.

[14]  L. Rangan,et al.  Genetic diversity in ecotypes of the scarce wild medicinal crop Zingiber moran revealed by ISSR and AFLP marker analysis and chromosome number assessment , 2015 .

[15]  Huan Gao,et al.  Transcriptome profiling shows gene regulation patterns in a flavonoid pathway in response to exogenous phenylalanine in Boesenbergia rotunda cell culture , 2014, BMC Genomics.

[16]  M. Chartrand,et al.  Biomedical Properties of a Natural Dietary Plant Metabolite, Zerumbone, in Cancer Therapy and Chemoprevention Trials , 2014, BioMed research international.

[17]  A. Rasedee,et al.  Zerumbone-loaded nanostructured lipid carrier induces G2/M cell cycle arrest and apoptosis via mitochondrial pathway in a human lymphoblastic leukemia cell line , 2014, International journal of nanomedicine.

[18]  V. A. Parthasarathy,et al.  Novel polymorphic microsatellite markers from turmeric, Curcuma longa L. (Zingiberaceae) , 2013 .

[19]  H. Sirat,et al.  Essential Oils of Alpinia Rafflesiana and Their Antimicrobial Activities , 2013, Natural product communications.

[20]  R. Yusof,et al.  Boesenbergia rotunda: From Ethnomedicine to Drug Discovery , 2012, Evidence-based complementary and alternative medicine : eCAM.

[21]  S. Taheri,et al.  Genetic relationships among five varieties of Curcuma alismatifolia (Zingiberaceae) based on ISSR markers. , 2012, Genetics and molecular research : GMR.

[22]  S. Nayak,et al.  Evaluation of genetic diversity in turmeric (Curcuma longa L.) using RAPD and ISSR markers , 2012 .

[23]  A. Karim,et al.  Effect of extraction solvents on the phenolic compounds and antioxidant activities of bunga kantan (Etlingera elatior Jack.) inflorescence , 2011 .

[24]  K. Awang,et al.  Chemical Constituents and Antimicrobial Activity of the Leaf and Rhizome Oils of Alpinia pahangensis Ridl., an Endemic Wild Ginger from Peninsular Malaysia , 2011, Chemistry & biodiversity.

[25]  S. Chakravarthi,et al.  Antioxidant effects of Etlingera elatior flower extract against lead acetate - induced perturbations in free radical scavenging enzymes and lipid peroxidation in rats , 2011, BMC Research Notes.

[26]  L. Rangan,et al.  Genetic Relationship of Curcuma Species from Northeast India Using PCR-Based Markers , 2011, Molecular biotechnology.

[27]  K. Sim,et al.  Phytochemical and Cytotoxic Investigations of Alpinia mutica Rhizomes , 2011, Molecules.

[28]  S. Sasidharan,et al.  Pharmacological activity, phytochemical analysis and toxicity of methanol extract of Etlingera elatior (torch ginger) flowers , 2010 .

[29]  A. Kikuchi,et al.  Relationships of Zingiber species, and genetic variability assessment in ginger (Zingiber officinale) accessions from ex-situ genebank, on-farm and rural markets , 2008 .

[30]  S. Klinbunga,et al.  Genetic relationships and species authentication of Boesenbergia (Zingiberaceae) in Thailand based on AFLP and SSCP analyses , 2008 .

[31]  A. Agusta,et al.  Comparison of Curcuma sp. in Yakushima with C. aeruginosa and C. zedoaria in Java by trnK gene sequence, RAPD pattern and essential oil component , 2007, Journal of Natural Medicines.

[32]  K. Shaari,et al.  Cardamonin, inhibits pro-inflammatory mediators in activated RAW 264.7 cells and whole blood. , 2006, European journal of pharmacology.

[33]  Faridah Abas,et al.  Antioxidative constituents of Etlingera elatior. , 2005, Journal of natural products.

[34]  P. Sirirugsa,et al.  Confirmation of relationships among Boesenbergia (Zingiberaceae) and related genera by RAPD , 2005 .

[35]  M. Branchard,et al.  Use of ISSR fingerprints to detect microsatellites and genetic diversity in several related Brassica taxa and Arabidopsis thaliana. , 2004, Hereditas.

[36]  L. Prince,et al.  Phylogenetic Analyses of Amomum (Alpinioideae: Zingiberaceae) Using ITS and matK DNA Sequence Data , 2004 .

[37]  L. Pedersen Phylogenetic analysis of the subfamily Alpinioideae (Zingiberaceae), particularly Etlingera Giseke, based on nuclear and plastid DNA , 2004, Plant Systematics and Evolution.

[38]  H. Nagamasu,et al.  SYSTEMATIC STUDIES OF BORNEAN ZINGIBERACEAE IV. ALPINIOIDEAE OF LAMBIR HILLS, SARAWAK , 2003 .

[39]  W. Kress,et al.  The phylogeny and a new classification of the gingers (Zingiberaceae): evidence from molecular data. , 2002, American journal of botany.

[40]  M. Branchard,et al.  Nonanchored Inter Simple Sequence Repeat (ISSR) markers: Reproducible and specific tools for genome fingerprinting , 2001, Plant Molecular Biology Reporter.

[41]  Sean R. Eddy,et al.  Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids , 1998 .

[42]  D. Labuda,et al.  Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. , 1994, Genomics.

[43]  K. Livak,et al.  DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. , 1990, Nucleic acids research.

[44]  M. Nei Molecular Evolutionary Genetics , 1987 .

[45]  P. Sial,et al.  Morphological and Molecular Screening of Turmeric (Curcuma longaL.) Cultivars for Resistance against Parasitic Nematode, Meloidogyneincognita , 2015 .

[46]  Y. Lim,et al.  Antioxidant properties of ginger leaves: An overview , 2011 .

[47]  Yujian Li,et al.  Unweighted Multiple Group Method with Arithmetic Mean , 2010, BIC-TA.

[48]  Y. Lim,et al.  Antioxidant and antibacterial activity of leaves of Etlingera species (Zingiberaceae) in Peninsular Malaysia , 2007 .

[49]  J. Orbell,et al.  Medicinal plants of Malaysia , 2007 .

[50]  W. Kress,et al.  The molecular phylogeny of Alpinia (Zingiberaceae): a complex and polyphyletic genus of gingers. , 2005, American journal of botany.

[51]  P. Tuchinda,et al.  Anti-inflammatory cyclohexenyl chalcone derivatives in Boesenbergia pandurata. , 2002, Phytochemistry.

[52]  R. Peakall,et al.  DNA profiling techniques for plant variety identification , 1995 .

[53]  J. Welsh,et al.  Fingerprinting genomes using PCR with arbitrary primers. , 1990, Nucleic acids research.