Nonlinear fatigue damage accumulation: Isodamage curve-based model and life prediction aspects

Abstract Cumulative fatigue damage analysis and life prediction of engineering structures/components is vital for ensuring their structural integrity and operational reliability under variable amplitude loadings. In this regard, a new nonlinear fatigue damage accumulation model is proposed by introducing a damage function related to the isodamage curves and remaining life aspects. Specifically, its damage exponent is refined by considering effects of loading history. Experimental data from tests available in literature are utilized for model validation and comparison. Compared with four existing models, the proposed model shows higher precision for cumulative damage modelling and fatigue life prediction than others. Moreover, it improves the deficiencies inherent in other rules under the promise of maintaining its simplicity in practice.

[1]  Jwo Pan,et al.  Fatigue Testing and Analysis: Theory and Practice , 2004 .

[2]  Alfonso Fernández-Canteli,et al.  Fatigue Life Response of P355NL1 Steel under Uniaxial Loading Using Kohout-Věchet Model☆ , 2016 .

[3]  Abílio M. P. De Jesus,et al.  Cyclic and Fatigue Behavior of the P355NL1 Steel Under Block Loading , 2009 .

[4]  Shun-Peng Zhu,et al.  Energy field intensity approach for notch fatigue analysis , 2019, International Journal of Fatigue.

[5]  Z. Hashin,et al.  A CUMULATIVE DAMAGE THEORY OF FATIGUE FAILURE , 1978 .

[6]  Shan-Tung Tu,et al.  High temperature fatigue and creep-fatigue behaviors in a Ni-based superalloy: Damage mechanisms and life assessment , 2019, International Journal of Fatigue.

[7]  Dianyin Hu,et al.  A non-local approach for probabilistic assessment of LCF life based on optimized effective-damage-parameter , 2018, Engineering Fracture Mechanics.

[8]  Samuel Kwofie,et al.  A fatigue driving stress approach to damage and life prediction under variable amplitude loading , 2013 .

[9]  Norbert Theil,et al.  Fatigue life prediction method for the practical engineering use taking in account the effect of the overload blocks , 2016 .

[10]  Dimitrios G. Pavlou,et al.  A phenomenological fatigue damage accumulation rule based on hardness increasing, for the 2024-T42 aluminum , 2002 .

[11]  A. Fissolo,et al.  Investigations into the cumulative fatigue life of an AISI 304L austenitic stainless steel used for pressure water reactors: Application of a double linear damage rule , 2015 .

[12]  Carlos D.S. Souto,et al.  Probabilistic modeling of fatigue life distribution and size effect of components with random defects , 2019, International Journal of Fatigue.

[13]  Nikolaos D. Batsoulas,et al.  Cumulative Fatigue Damage: CDM‐Based Engineering Rule and Life Prediction Aspect , 2016 .

[14]  Michael M. Khonsari,et al.  An experimental approach to estimate damage and remaining life of metals under uniaxial fatigue loading , 2014 .

[15]  K. J. Miller,et al.  Cumulative damage laws for fatigue crack initiation and stage i propagation , 1977 .

[16]  Yu Zhang,et al.  Structural reliability analysis and uncertainties‐based collaborative design and optimization of turbine blades using surrogate model , 2018, Fatigue & Fracture of Engineering Materials & Structures.

[17]  Paul C. Paris,et al.  Subsurface crack initiation and propagation mechanisms in gigacycle fatigue , 2010 .

[18]  Guian Qian,et al.  A model to predict S-N curves for surface and subsurface crack initiations in different environmental media , 2015 .

[19]  Cetin Morris Sonsino,et al.  Cumulative Damage of High-strength Cast Iron Alloys for Automotive Applications , 2015 .

[20]  J. C. Freche,et al.  Application of a double linear damage rule to cumulative fatigue , 1967 .

[21]  Jiao Deng,et al.  Effects of initial δ phase on hot tensile deformation behaviors and fracture characteristics of a typical Ni-based superalloy , 2014 .

[22]  Hong-Zhong Huang,et al.  A NEW NON-LINEAR CONTINUUM DAMAGE MECHANICS MODEL FOR THE FATIGUE LIFE PREDICTION UNDER VARIABLE LOADING , 2013 .

[23]  Grzegorz Lesiuk,et al.  Nonlinear fatigue damage accumulation and life prediction of metals: A comparative study , 2018, Fatigue & Fracture of Engineering Materials & Structures.

[24]  Hong-Zhong Huang,et al.  A new approach to the investigation of load interaction effects and its application in residual fatigue life prediction , 2016 .

[25]  Pedro M.G.P. Moreira,et al.  A generalization of the fatigue Kohout-Věchet model for several fatigue damage parameters , 2017 .

[26]  José A.F.O. Correia,et al.  A probabilistic analysis of Miner's law for different loading conditions , 2016 .

[27]  Farayi Musharavati,et al.  A Review on Fatigue Life Prediction Methods for Metals , 2016 .

[28]  A. Aid,et al.  A non-linear energy model of fatigue damage accumulation and its verification for Al-2024 aluminum alloy. International Journal of Non-Linear Mechanics. Vol 51, pp 145–151, 2013. , 2013 .

[29]  Guozheng Kang,et al.  On the fatigue performance and residual life of intercity railway axles with inside axle boxes , 2018, Engineering Fracture Mechanics.

[30]  Dimitrios G. Pavlou,et al.  The theory of the S-N fatigue damage envelope: Generalization of linear, double-linear, and non-linear fatigue damage models , 2018 .

[31]  Shun-Peng Zhu,et al.  Strain energy-based multiaxial fatigue life prediction under normal/shear stress interaction , 2018, International Journal of Damage Mechanics.

[32]  Rui Calçada,et al.  Computational framework for multiaxial fatigue life prediction of compressor discs considering notch effects , 2018, Engineering Fracture Mechanics.

[33]  Y. C. Lin,et al.  Effects of initial microstructures on hot tensile deformation behaviors and fracture characteristics of Ti-6Al-4V alloy , 2018 .

[34]  Americo Cunha,et al.  Parametric probabilistic approach for cumulative fatigue damage using double linear damage rule considering limited data , 2019 .

[35]  Ali Fatemi,et al.  Variable amplitude cyclic deformation and fatigue behaviour of stainless steel 304L including step, periodic, and random loadings , 2010 .

[36]  Abílio M. P. De Jesus,et al.  Strain energy-based fatigue life prediction under variable amplitude loadings , 2018 .

[37]  Hong-Zhong Huang,et al.  A modified nonlinear fatigue damage accumulation model , 2015 .

[38]  Hong-Zhong Huang,et al.  A nonlinear fatigue damage accumulation model considering strength degradation and its applications to fatigue reliability analysis , 2015 .

[39]  G. R. Halford,et al.  Practical implementation of the double linear damage rule and damage curve approach for treating cumulative fatigue damage , 1981 .

[40]  A. D. de Jesus,et al.  Probabilistic modelling of notch fatigue and size effect of components using highly stressed volume approach , 2019, International Journal of Fatigue.

[41]  Claude Bathias,et al.  A rapid scatter prediction method for very high cycle fatigue , 2013 .

[42]  V. F. González-Albuixech,et al.  On the temperature independence of statistical model parameters for cleavage fracture in ferritic steels , 2018 .

[43]  Shun-Peng Zhu,et al.  Strain energy gradient-based LCF life prediction of turbine discs using critical distance concept , 2018, International Journal of Fatigue.

[44]  Dimitrios G. Pavlou,et al.  A one-parameter nonlinear fatigue damage accumulation model , 2017 .

[45]  Weiwen Peng,et al.  Mean stress effect correction in strain energy-based fatigue life prediction of metals , 2017 .

[46]  Guian Qian,et al.  Multiaxial fatigue analysis of notched components using combined critical plane and critical distance approach , 2019, International Journal of Mechanical Sciences.

[47]  Khaled Galal,et al.  A fatigue stress-life damage accumulation model for variable amplitude fatigue loading based on virtual target life , 2013 .

[48]  E. W. C. Wilkins,et al.  Cumulative damage in fatigue , 1956 .

[49]  Alan Plumtree,et al.  A fatigue damage accumulation model based on continuum damage mechanics and ductility exhaustion , 1998 .

[50]  S. Subramanyan,et al.  A Cumulative Damage Rule Based on the Knee Point of the S-N Curve , 1976 .

[51]  Ayhan Ince,et al.  A modification of Morrow and Smith–Watson–Topper mean stress correction models , 2011 .

[52]  A. Aid,et al.  Fatigue life prediction under variable loading based on a new damage model , 2011 .

[53]  Abdelwaheb Amrouche,et al.  Sequential law in multiaxial fatigue, a new damage indicator , 2005 .

[54]  António A. Fernandes,et al.  Cyclic and Fatigue Behavior of the P355NL1 Steel Under Block Loading , 2007 .

[55]  Fang Yi,et al.  NEW CONTINUOUS FATIGUE DAMAGE MODEL BASED ON WHOLE DAMAGE FIELD MEASUREMENT , 2006 .

[56]  Ali Fatemi,et al.  Cumulative fatigue damage and life prediction theories: a survey of the state of the art for homogeneous materials , 1998 .

[57]  Hong-Zhong Huang,et al.  A Modified Nonlinear Damage Accumulation Model for Fatigue Life Prediction Considering Load Interaction Effects , 2014, TheScientificWorldJournal.