Global Attraction to Solitary Waves for a Nonlinear Dirac Equation with Mean Field Interaction

We consider a $\mathbf{U}(1)$-invariant nonlinear Dirac equation in dimension $n\geq1$, interacting with itself via the mean field mechanism. We analyze the long-time asymptotics of solutions and prove that, under certain generic assumptions, each finite charge solution converges as $t\to\pm\infty$ to the two-dimensional set of all “nonlinear eigenfunctions” of the form $\phi(x)e^{-i\omega t}$. This global attraction is caused by the nonlinear energy transfer from lower harmonics to the continuous spectrum and subsequent dispersive radiation. The research is inspired by Bohr's postulate on quantum transitions and Schrodinger's identification of the quantum stationary states to the nonlinear eigenfunctions of the coupled $\mathbf{U}(1)$-invariant Maxwell–Schrodinger and Maxwell–Dirac equations.

[1]  Arne Jensen,et al.  Spectral properties of Schrödinger operators and time-decay of the wave functions , 1979 .

[2]  T. Tao A (concentration-)compact attractor for high-dimensional non-linear Schr\ , 2006, math/0611402.

[3]  A. Soffer,et al.  Multichannel nonlinear scattering for nonintegrable equations II. The case of anisotropic potentials and data , 1992 .

[4]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[5]  T. Cazenave,et al.  Existence of localized solutions for a classical nonlinear Dirac field , 1986 .

[6]  Vladimir S. Buslaev,et al.  On the stability of solitary waves for nonlinear Schr?odinger equations , 1995 .

[7]  W. Strauss,et al.  Decay and scattering of solutions of a nonlinear relativistic wave equation , 1972 .

[8]  M. Esteban,et al.  Stationary states of the nonlinear Dirac equation: A variational approach , 1995 .

[9]  Yurii Lyubarskii,et al.  Lectures on entire functions , 1996 .

[10]  F. Merle Existence of stationary states for nonlinear Dirac equations , 1988 .

[11]  Mario Soler,et al.  Classical, Stable, Nonlinear Spinor Field with Positive Rest Energy , 1970 .

[12]  Global Attractor for a Nonlinear Oscillator Coupled to the Klein–Gordon Field , 2006, math/0609013.

[13]  C. Sulem,et al.  On asymptotic stability of solitary waves for nonlinear Schrödinger equations , 2003 .

[14]  A. Soffer,et al.  Resonances, radiation damping and instabilitym in Hamiltonian nonlinear wave equations , 1998, chao-dyn/9807003.

[15]  S. Cuccagna Stabilization of solutions to nonlinear Schrödinger equations , 2001 .

[16]  Vladimir Georgiev,et al.  Stationary solutions of the Maxwell-Dirac and the Klein-Gordon-Dirac equations , 1996 .

[17]  A. Jensen Spectral properties of Schrödinger operators and time-decay of the wave functions. Results in L2(R4) , 1984 .

[18]  Marina Chugunova,et al.  Block-Diagonalization of the Symmetric First-Order Coupled-Mode System , 2005, SIAM J. Appl. Dyn. Syst..

[19]  John William Nicholson,et al.  The Constitution of Atoms and Molecules , 1914, Nature.

[20]  A. Komech ON ATTRACTOR OF A SINGULAR NONLINEAR U(1)-INVARIANT KLEIN-GORDON EQUATION , 2003 .

[21]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[22]  Simonetta Abenda,et al.  Solitary waves for Maxwell-Dirac and Coulomb-Dirac models , 1998 .

[23]  Erwin Schrödinger,et al.  Quantisierung als Eigenwertproblem , 1925 .

[24]  Vázquez,et al.  Stability under dilations of nonlinear spinor fields. , 1986, Physical review. D, Particles and fields.

[25]  Scipio Cuccagna ON ASYMPTOTIC STABILITY OF GROUND STATES OF NLS , 2003 .

[26]  Walter A. Strauss,et al.  Decay and asymptotics for □u = F(u)☆ , 1968 .

[27]  Yan Guo,et al.  Global finite-energy solutions of the Maxwell-Schrödinger system , 1995 .

[28]  A. Komech,et al.  On the global attraction to solitary waves for the Klein-Gordon equation coupled to a nonlinear oscillator , 2006, math/0608605.

[29]  Nikolaos Bournaveas,et al.  Local existence for the Maxwell-Dirac equations in three space dimensions , 1996 .

[30]  Michael I. Weinstein,et al.  Multichannel nonlinear scattering for nonintegrable equations , 1990 .

[31]  A. Komech,et al.  On global attraction to solitary waves for the Klein-Gordon field coupled to several nonlinear oscillators , 2007, math/0702660.

[32]  C. E. Wayne,et al.  Invariant Manifolds for a Class of Dispersive, Hamiltonian, Partial Differential Equations , 1997 .

[33]  I. Segal Non-Linear Semi-Groups , 1963 .

[34]  A. Komech,et al.  Global attraction to solitary waves for Klein-Gordon equation with mean field interaction , 2007, 0708.1131.

[35]  V. Gueorguiev Small amplitude solutions of the Maxwell - Dirac equations , 1991 .

[36]  I. Segal The global Cauchy problem for a relativistic scalar field with power interaction , 1963 .

[37]  Walter A. Strauss,et al.  Nonlinear Wave Equations , 1990 .

[38]  E. C. Titchmarsh The Zeros of Certain Integral Functions , 1926 .