Simulation of uncertain dynamic systems described by interval models: A survey

Abstract In this paper, a survey of approaches to interval simulation of uncertain systems is presented. The kind of uncertain systems considered are those described by a model with parameters bounded in intervals. These last years the research of algorithms for simulating these type of systems has been a very active. Many researchers coming from different research areas and using different types of approaches have developed different algorithms. In this paper, the main problems and approaches when performing this kind of simulation are presented. The main goal of the paper is to present for the first time all existent approaches together emphasising that since all researchers face the same problem but in different contexts, they are finding the same kind of problems in spite of their different formalisms and methodologies.

[1]  J. Ragot,et al.  Evaluation des bornes de l'état d'un système incertain. Approche par intervalles , 2003 .

[2]  Nicola Femia,et al.  Genetic optimization of interval arithmetic-based worst case circuit tolerance analysis , 1999 .

[3]  F. Chernousko State Estimation for Dynamic Systems , 1993 .

[4]  Wolfgang Kuehn,et al.  Rigorously computed orbits of dynamical systems without the wrapping effect , 1998, Computing.

[5]  P. Eijgenraam The Solution of Initial Value Problems Using Interval Arithmetic , 1981 .

[6]  Martin Berz,et al.  Verified Integration of ODEs and Flows Using Differential Algebraic Methods on High-Order Taylor Models , 1998, Reliab. Comput..

[7]  Claire S. Adjiman,et al.  A Rigorous Global Optimization Algorithm for Problems with Ordinary Differential Equations , 2002, J. Glob. Optim..

[8]  Josep Vehí,et al.  A Survey on Interval Model Simulators and their Properties Related to Fault Detection , 2000 .

[9]  Bernd Tibken,et al.  Simulation of controlled uncertain nonlinear systems , 1995 .

[10]  Nedialko S. Nedialkov,et al.  Validated solutions of initial value problems for ordinary differential equations , 1999, Appl. Math. Comput..

[11]  Pascal Van Hentenryck,et al.  Consistency Techniques in Ordinary Differential Equations , 1998, Constraints.

[12]  Eldon Hansen,et al.  Global optimization using interval analysis , 1992, Pure and applied mathematics.

[13]  P. Cuguero,et al.  A class of uncertain linear interval models for which a set based robust simulation can be reduced to few pointwise simulations , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[14]  Ramon E. Moore Methods and applications of interval analysis , 1979, SIAM studies in applied mathematics.

[15]  P. Cuguero,et al.  Time-invariant approach to set-membership simulation and state observation for discrete linear time-invariant systems with parametric uncertainty , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[16]  Lubomir V. Kolev,et al.  Interval Methods for Circuit Analysis , 1993, Advanced Series in Circuits and Systems.

[17]  Joseba Quevedo,et al.  A new algorithm for adaptive threshold generation in robust fault detection based on a sliding window and global optimization , 1999, 1999 European Control Conference (ECC).

[18]  F. Fairman Introduction to dynamic systems: Theory, models and applications , 1979, Proceedings of the IEEE.

[19]  B. Kuipers,et al.  Combined Qualitative and Numerical Simulation with Q 3 ° ' , 2003 .

[20]  Pascal Van Hentenryck,et al.  A Constraint Satisfaction Approach to Parametric Differential Equations , 2001, IJCAI.

[21]  Nedialko S. Nedialkov,et al.  An Interval Hermite-Obreschkoff Method for Computing Rigorous Bounds on the Solution of an Initial Value Problem for an Ordinary Differential Equation , 1998, SCAN.

[22]  Dan T. Horak Failure detection in dynamic systems with modeling errors , 1988 .

[23]  Benjamin Kuipers,et al.  Qualitative reasoning: Modeling and simulation with incomplete knowledge , 1994, Autom..

[24]  Benjamin J. Kaipers,et al.  Qualitative Simulation , 1989, Artif. Intell..

[25]  G. Corliss Survey of interval algorithms for ordinary differential equations , 1989 .

[26]  Vicenç Puig,et al.  Worst-case state estimation and simulation of uncertain discrete-time systems using zonotopes , 2001, 2001 European Control Conference (ECC).

[27]  Benjamin Kuipers,et al.  Using Incomplete Quantitative Knowledge In Qualitative Reasoning , 1988, AAAI.

[28]  Vicenç Puig,et al.  Worst-Case Simulation of Discrete Linear Time-Invariant Interval Dynamic Systems , 2003, Reliab. Comput..

[29]  Claire S. Adjiman,et al.  Global optimization of dynamic systems , 2004, Comput. Chem. Eng..

[30]  Nedialko S. Nedialkov,et al.  Some recent advances in validated methods for IVPs for ODEs , 2002 .

[31]  K. Nickel Using Interval Methods for the Numerical Solution of ODE'S (Ordinary Differential Equations). , 1983 .

[32]  John Norton Modal robust state estimator with deterministic specification of uncertainty , 1998, Robustness in Identification and Control.

[33]  Andrea Bonarini,et al.  A qualitative simulation approach for fuzzy dynamical models , 1994, TOMC.

[34]  Eyke Hüllermeier,et al.  Numerical Methods for Fuzzy Initial Value Problems , 1999, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[35]  Jean-Marie Flaus,et al.  Trajectory computation of dynamic uncertain systems , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[36]  Giuseppe Carlo Calafiore Set simulations for quadratic systems , 2003, IEEE Trans. Autom. Control..

[37]  A. Kurzhanski,et al.  Ellipsoidal Calculus for Estimation and Control , 1996 .

[38]  Giuseppe Carlo Calafiore,et al.  Worst-case simulation of uncertain systems , 1998, Robustness in Identification and Control.

[39]  Alex M. Andrew,et al.  Applied Interval Analysis: With Examples in Parameter and State Estimation, Robust Control and Robotics , 2002 .

[40]  Josep Vehí,et al.  Application of Modal Intervals to the Generation of Error-Bounded Envelopes , 2001, Reliab. Comput..

[41]  Nicola Femia,et al.  True worst-case circuit tolerance analysis using genetic algorithms and affine arithmetic , 2000 .

[42]  Eyke Hüllermeier,et al.  An Approach to Modelling and Simulation of Uncertain Dynamical Systems , 1997, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[43]  J. Gouzé,et al.  Interval observers for uncertain biological systems , 2000 .

[44]  P. Danès Interfaçage symbolique-numérique dans la simulation qualitative des systèmes dynamiques , 1995 .

[45]  Nedialko S. Nedialkov,et al.  An Interval Hermite-Obreschkoff Method for Computing Rigorous Bounds on the Solution of an Initial Value Problem for an Ordinary Differential Equation , 1999, Reliab. Comput..

[46]  E. P. Oppenheimer,et al.  Application of interval analysis techniques to linear systems. III. Initial value problems , 1988 .

[47]  Gianluca Bontempi,et al.  Qua.Si. III: a software tool for simulation of fuzzy dynamical systems , 1996 .

[48]  Benjamin Kuipers,et al.  Qualitative Simulation , 1986, Artificial Intelligence.

[49]  Karl Nickel How to Fight the Wrapping Effect , 1985, Interval Mathematics.

[50]  B. Barmish,et al.  The propagation of parametric uncertainty via polytopes , 1979 .

[51]  P. Cuguero,et al.  Avoiding possible instability in robust simulation of stable parametric uncertain time-invariant systems , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[52]  Benjamin Kuipers,et al.  Numerical Behavior Envelopes for Qualitative Models , 1993, AAAI.

[53]  Nedialko S. Nedialkov,et al.  A New Perspective on the Wrapping Effect in Interval Methods for Initial Value Problems for Ordinary Differential Equations , 2001, Perspectives on Enclosure Methods.

[54]  A. Neumaier The Wrapping Effect, Ellipsoid Arithmetic, Stability and Confidence Regions , 1993 .

[55]  Giuseppe Carlo Calafiore,et al.  Robust filtering for discrete-time systems with bounded noise and parametric uncertainty , 2001, IEEE Trans. Autom. Control..

[56]  W. Walter Differential and Integral Inequalities , 1970 .