Simplex-splines on the Clough-Tocher element
暂无分享,去创建一个
[1] Tom Lyche,et al. A B-spline-like basis for the Powell-Sabin 12-split based on simplex splines , 2013, Math. Comput..
[2] T. Lyche,et al. Stable Simplex Spline Bases for $$C^3$$C3 Quintics on the Powell–Sabin 12-Split , 2015, 1504.02628.
[3] C. Micchelli. On a numerically efficient method for computing multivariate B-splines , 1979 .
[4] Hendrik Speleers,et al. Construction and analysis of cubic Powell-Sabin B-splines , 2017, Comput. Aided Geom. Des..
[5] Gerald E. Farin,et al. A modified Clough-Tocher interpolant , 1985, Comput. Aided Geom. Des..
[6] Hendrik Speleers,et al. A normalized basis for quintic Powell-Sabin splines , 2010, Comput. Aided Geom. Des..
[7] Larry L. Schumaker,et al. Spline functions on triangulations , 2007, Encyclopedia of mathematics and its applications.
[8] Tom Lyche,et al. A Hermite interpolatory subdivision scheme for C2-quintics on the Powell-Sabin 12-split , 2014, Comput. Aided Geom. Des..
[9] Frank Zeilfelder,et al. Interpolation by Splines on Triangulations , 1999 .
[10] Stephen Mann,et al. Cubic precision Clough-Tocher interpolation , 1999, Comput. Aided Geom. Des..
[11] Malcolm A. Sabin,et al. Piecewise Quadratic Approximations on Triangles , 1977, TOMS.