Design strategies for shape memory polymers

Shape memory polymers (SMPs) are polymeric materials capable of recovering from a ‘fixed’ temporary shape to a ‘memorized’ permanent shape upon exposure to an external stimulus. Two structural elements are required for a polymer to exhibit useful shape memory: a network structure that defines the permanent shape (the ‘memory’), and a switching segment that induces a significant change in the mobility of the network chains. Four common strategies based on various chemical/physical principles and with different advantages/disadvantages have been established for the design and preparation of SMPs. A new design strategy, based on the concept of functional composite materials, allows for a greater control over material properties and functions and has shown great promise in designing SMPs for a wide variety of applications.

[1]  P. Mather,et al.  Conductive shape memory nanocomposites for high speed electrical actuation , 2010 .

[2]  Robert Weiss,et al.  New Design of Shape Memory Polymers: Mixtures of an Elastomeric Ionomer and Low Molar Mass Fatty Acids and Their Salts , 2008 .

[3]  Ingrid A. Rousseau,et al.  Shape memory epoxy: Composition, structure, properties and shape memory performances , 2010 .

[4]  J P Bearinger,et al.  Post-Polymerization Crosslinked Polyurethane Shape-Memory Polymers. , 2010, Journal of applied polymer science.

[5]  Ingrid A. Rousseau,et al.  Facile tailoring of thermal transition temperatures of epoxy shape memory polymers , 2009 .

[6]  Ken Gall,et al.  Effects of sensitizer length on radiation crosslinked shape-memory polymers , 2010 .

[7]  Shuogui Xu,et al.  Shape memory behaviour of radiation-crosslinked PCL/PMVS blends , 2006 .

[8]  Jinlian Hu,et al.  A review of actively moving polymers in textile applications , 2010 .

[9]  Patrick T. Mather,et al.  Combined One-Way and Two-Way Shape Memory in a Glass-Forming Nematic Network , 2009 .

[10]  T. Xie Recent advances in polymer shape memory , 2011 .

[11]  Xiaofan Luo,et al.  Shape Memory Assisted Self-Healing Coating. , 2013, ACS macro letters.

[12]  A. Lendlein,et al.  Shape-memory polymers , 2002 .

[13]  Ken Gall,et al.  Structure-property relationships in photopolymerizable polymer networks: Effect of composition on the crosslinked structure and resulting thermomechanical properties of a (meth)acrylate-based system , 2008 .

[14]  Wei Chen,et al.  Thermosetting polyurethanes with water‐swollen and shape memory properties , 2002 .

[15]  A. Lendlein,et al.  Multifunctional Shape‐Memory Polymers , 2010, Advanced materials.

[16]  P. Mather,et al.  Shape Memory Polymer Research , 2009 .

[17]  R. Langer,et al.  Biodegradable, Elastic Shape-Memory Polymers for Potential Biomedical Applications , 2002, Science.

[18]  Wei Min Huang,et al.  Cooling-/water-responsive shape memory hybrids , 2012 .

[19]  Marc Behl,et al.  Triple-shape polymers , 2010 .

[20]  Ken Gall,et al.  Long-term toughness of photopolymerizable (meth)acrylate networks in aqueous environments. , 2011, Acta biomaterialia.

[21]  P. Mather,et al.  Soft bacterial polyester‐based shape memory nanocomposites featuring reconfigurable nanostructure , 2012 .

[22]  I. Zucchi,et al.  Shape memory epoxies based on networks with chemical and physical crosslinks , 2011 .

[23]  Jinlian Hu,et al.  Triple shape memory effect in multiple crystalline polyurethanes , 2010 .

[24]  Patrick T. Mather,et al.  Review of progress in shape-memory polymers , 2007 .

[25]  Jinlian Hu,et al.  Polymeric Shape Memory Nanocomposites with Heterogeneous Twin Switches , 2011 .

[26]  Xin Lan,et al.  Review of electro-active shape-memory polymer composite , 2009 .

[27]  Marc Behl,et al.  One‐Step Process for Creating Triple‐Shape Capability of AB Polymer Networks , 2009 .

[28]  Ben Dietsch,et al.  A review - : Features and benefits of shape memory polymers (SMPs) , 2007 .

[29]  Feng-kui Li,et al.  Shape memory effect of ethylene–vinyl acetate copolymers , 1999 .

[30]  Ken Gall,et al.  The effect of the glass transition temperature on the toughness of photopolymerizable (meth)acrylate networks under physiological conditions. , 2009, Polymer.

[31]  Kam W. Leong,et al.  Dynamic Topographical Control of Mesenchymal Stem Cells by Culture on Responsive Poly(ϵ‐caprolactone) Surfaces , 2011, Advanced materials.

[32]  L. Y. Wang,et al.  Synthesis and thermomechanical research of shape memory epoxy systems , 2011 .

[33]  Robert Langer,et al.  AB-polymer networks based on oligo(epsilon-caprolactone) segments showing shape-memory properties. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Andreas Lendlein,et al.  Shape-memory polymers. , 2002, Angewandte Chemie.

[35]  Ken Gall,et al.  Effect of chemical structure and crosslinking density on the thermo-mechanical properties and toughness of (meth)acrylate shape-memory polymer networks , 2008 .

[36]  Yong Zhu,et al.  Achieving shape memory: Reversible behaviors of cellulose–PU blends in wet–dry cycles , 2012 .

[37]  A. Lendlein,et al.  Shape-memory polymers as a technology platform for biomedical applications , 2010, Expert review of medical devices.

[38]  T. Ware,et al.  High‐Strain Shape‐Memory Polymers , 2010 .

[39]  William R. Rodgers,et al.  Semi-crystalline two-way shape memory elastomer , 2011 .

[40]  Jinlian Hu,et al.  Dependency of the shape memory properties of a polyurethane upon thermomechanical cyclic conditions , 2005 .

[41]  Samuel Ibekwe,et al.  A review of stimuli-responsive polymers for smart textile applications , 2012 .

[42]  Ken Gall,et al.  Deformation Limits in Shape‐Memory Polymers , 2008 .

[43]  Guangming Zhu,et al.  Shape-memory effects of radiation crosslinked poly(ϵ-caprolactone) , 2003 .

[44]  Patrick T. Mather,et al.  Tailored Phase Transitions via Mixed-Mesogen Liquid Crystalline Polymers with Silicon-Based Spacers , 2005 .

[45]  Shravanthi T. Reddy,et al.  Bioinspired Surfaces with Switchable Adhesion , 2007 .

[46]  J. Vilas,et al.  Development and characterization of semi-crystalline polyalkenamer based shape memory polymers , 2011 .

[47]  Marc Behl,et al.  Shape-memory capability of binary multiblock copolymer blends with hard and switching domains provided by different components , 2009 .

[48]  Heng Zhang,et al.  A novel type of shape memory polymer blend and the shape memory mechanism , 2009 .

[49]  W. Huang,et al.  Stimulus-responsive shape memory materials: A review , 2012 .

[50]  Yu Xiao,et al.  A biodegradable shape-memory nanocomposite with excellent magnetism sensitivity , 2009, Nanotechnology.

[51]  Mao Xu,et al.  Polyurethanes having shape memory effects , 1996 .

[52]  R. Langer,et al.  Polymeric triple-shape materials , 2006, Proceedings of the National Academy of Sciences.

[53]  Wei Zeng,et al.  Thermostimulative shape‐memory effect of reactive compatibilized high‐density polyethylene/poly(ethylene terephthalate) blends by an ethylene–butyl acrylate–glycidyl methacrylate terpolymer , 2009 .

[54]  Ken Gall,et al.  Radiation crosslinked shape-memory polymers , 2010 .

[55]  P. Mather,et al.  Shape memory effect exhibited by smectic-C liquid crystalline elastomers. , 2003, Journal of the American Chemical Society.

[56]  Wei Min Huang,et al.  Thermo-moisture responsive polyurethane shape-memory polymer and composites: a review , 2010 .

[57]  K. Gall,et al.  On the toughness of photopolymerizable (meth)acrylate networks for biomedical applications , 2009 .

[58]  Thorsten Pretsch,et al.  Triple-shape properties of a thermoresponsive poly(ester urethane) , 2009 .

[59]  Q. Meng,et al.  A review of shape memory polymer composites and blends , 2009 .

[60]  Nicholas R. Wheeler,et al.  All-Organic, Stimuli-Responsive Polymer Composites with Electrospun Fiber Fillers. , 2012, ACS macro letters.

[61]  P. Mather,et al.  Thermomechanical characterization of blends of poly (vinyl acetate) with semicrystalline polymers for shape memory applications , 2003 .

[62]  James H Henderson,et al.  Dynamic cell behavior on shape memory polymer substrates. , 2011, Biomaterials.

[63]  Yang-Tse Cheng,et al.  Revealing triple-shape memory effect by polymer bilayers. , 2009, Macromolecular rapid communications.

[64]  I. Rousseau Challenges of Shape Memory Polymers : A Review of the Progress Toward Overcoming SMP's Limitations , 2008 .

[65]  H. Radusch,et al.  Multiple shape-memory behavior and thermal-mechanical properties of peroxide cross-linked blends of linear and short-chain branched polyethylenes , 2008 .

[66]  Xiaofan Luo,et al.  Triple‐Shape Polymeric Composites (TSPCs) , 2010 .

[67]  Yanju Liu,et al.  Shape-memory polymers and their composites: Stimulus methods and applications , 2011 .

[68]  Ward Small,et al.  Biomedical applications of thermally activated shape memory polymers. , 2009, Journal of materials chemistry.

[69]  Alicia M. Ortega,et al.  Strong, Tailored, Biocompatible Shape‐Memory Polymer Networks , 2008, Advanced functional materials.

[70]  K. M. Lee,et al.  Biodegradable thermoplastic polyurethanes incorporating polyhedral oligosilsesquioxane. , 2008, Biomacromolecules.

[71]  Patrick T. Mather,et al.  Chemically Cross-Linked Polycyclooctene: Synthesis, Characterization, and Shape Memory Behavior , 2002 .

[72]  J. R. Lin,et al.  Shape‐memorized crosslinked ester‐type polyurethane and its mechanical viscoelastic model , 1999 .

[73]  L. Yahia,et al.  Medical applications of shape memory polymers , 2007, Biomedical materials.

[74]  Robin Shandas,et al.  Photopolymerized Thiol-Ene Systems as Shape Memory Polymers. , 2010, Polymer.

[75]  T. Xie,et al.  Recent advances in polymer shape memory , 2011 .

[76]  D. Ratna,et al.  Recent advances in shape memory polymers and composites: a review , 2008 .

[77]  Xiaofan Luo,et al.  Preparation and Characterization of Shape Memory Elastomeric Composites , 2009 .

[78]  I. Rousseau,et al.  Effect of Chemical Composition on the Deformability of Shape‐Memory Epoxies , 2011 .

[79]  P. Mather,et al.  PEG−POSS Multiblock Polyurethanes: Synthesis, Characterization, and Hydrogel Formation , 2010 .

[80]  William Paul King,et al.  Nanoindentation of shape memory polymer networks , 2007 .

[81]  P. Mather,et al.  Two-way reversible shape memory in a semicrystalline network , 2008 .

[82]  K. A. Burke,et al.  Soft shape memory in main-chain liquid crystalline elastomers , 2010 .

[83]  A. Lendlein,et al.  Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[84]  Marc Behl,et al.  Actively moving polymers. , 2006, Soft matter.

[85]  Robin Shandas,et al.  Unconstrained recovery characterization of shape-memory polymer networks for cardiovascular applications. , 2007, Biomaterials.

[86]  Jinsong Leng,et al.  Shape-Memory Polymers—A Class of Novel Smart Materials , 2009 .