Segmentation of Brain Magnetic Resonance Images

This chapter presents the application of different rough-fuzzy clustering algorithms for segmentation of brain magnetic resonance (MR) images. One of the important issues of the partitive-clustering-algorithm-based brain MR image segmentation method is the selection of initial prototypes of different classes or categories. The concept of discriminant analysis, based on the maximization of class separability, is used to circumvent the initialization and local minima problems of the partitive clustering algorithms. The chapter first deals with the pixel classification problem, and then gives an overview of the feature extraction techniques employed in segmentation of brain MR images, along with the initialization method of c-means algorithm based on the maximization of class separability. It presents implementation details, experimental results, and a comparison among different c-means algorithms. The algorithms compared are hard c-means (HCM), fuzzy c-means (FCM), possibilistic c-means (PCM), FPCM, rough c-means (RCM), and rough-fuzzy c-means (RFCM). fuzzy set theory; image classification; image segmentation; magnetic resonance imaging; pattern clustering; rough set theory

[1]  Sebastian Widz,et al.  A Rough Set-Based Magnetic Resonance Imaging Partial Volume Detection System , 2005, PReMI.

[2]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[3]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[4]  H. R. Singleton,et al.  Automatic cardiac MR image segmentation using edge detection by tissue classification in pixel neighborhoods , 1997, Magnetic resonance in medicine.

[5]  Sadaaki Miyamoto,et al.  Fuzzy c-Means Clustering Using Kernel Functions in Support Vector Machines , 2003, J. Adv. Comput. Intell. Intell. Informatics.

[6]  P.K Sahoo,et al.  A survey of thresholding techniques , 1988, Comput. Vis. Graph. Image Process..

[7]  Sankar K. Pal,et al.  Rough Set Based Generalized Fuzzy $C$ -Means Algorithm and Quantitative Indices , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[8]  Mark A. Girolami,et al.  Mercer kernel-based clustering in feature space , 2002, IEEE Trans. Neural Networks.

[9]  Pawan Lingras,et al.  Interval Set Clustering of Web Users with Rough K-Means , 2004, Journal of Intelligent Information Systems.

[10]  Ajoy Kumar Ray,et al.  Color image segmentation: Rough-set theoretic approach , 2008, Pattern Recognit. Lett..

[11]  S. Pal,et al.  Segmentation of remotely sensed images with fuzzy thresholding, and quantitative evaluation , 2000 .

[12]  Koenraad Van Leemput,et al.  Automated model-based tissue classification of MR images of the brain , 1999, IEEE Transactions on Medical Imaging.

[13]  Sankar K. Pal,et al.  Rough fuzzy MLP: knowledge encoding and classification , 1998, IEEE Trans. Neural Networks.

[14]  Lawrence O. Hall,et al.  Knowledge-based classification and tissue labeling of MR images of human brain , 1993, IEEE Trans. Medical Imaging.

[15]  Aboul Ella Hassanien,et al.  Fuzzy rough sets hybrid scheme for breast cancer detection , 2007, Image Vis. Comput..

[16]  Sebastian Widz,et al.  Approximation Degrees in Decision Reduct-Based MRI Segmentation , 2007, 2007 Frontiers in the Convergence of Bioscience and Information Technologies.

[17]  D Caramella,et al.  Neural network segmentation of magnetic resonance spin echo images of the brain. , 1993, Journal of biomedical engineering.

[18]  Francesco Masulli,et al.  Soft transition from probabilistic to possibilistic fuzzy clustering , 2006, IEEE Transactions on Fuzzy Systems.

[19]  James M. Keller,et al.  A possibilistic fuzzy c-means clustering algorithm , 2005, IEEE Transactions on Fuzzy Systems.

[20]  L O Hall,et al.  Review of MR image segmentation techniques using pattern recognition. , 1993, Medical physics.

[21]  Kenneth Revett,et al.  A Hybrid Approach to MR Imaging Segmentation Using Unsupervised Clustering and Approximate Reducts , 2005, RSFDGrC.

[22]  Witold Pedrycz,et al.  Rough–Fuzzy Collaborative Clustering , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[23]  James C. Bezdek,et al.  A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain , 1992, IEEE Trans. Neural Networks.

[24]  Bhabatosh Chanda,et al.  Second Order Fuzzy Measure and Weighted Co-Occurrence Matrix for Segmentation of Brain MR Images , 2008, Fundam. Informaticae.

[25]  Azriel Rosenfeld,et al.  Chapter 10 – Segmentation , 1982 .

[26]  Gerald Schaefer,et al.  Rough Sets and near Sets in Medical Imaging: a Review , 2022 .

[27]  Jagath C. Rajapakse,et al.  Statistical approach to segmentation of single-channel cerebral MR images , 1997, IEEE Transactions on Medical Imaging.

[28]  James M. Keller,et al.  A possibilistic approach to clustering , 1993, IEEE Trans. Fuzzy Syst..

[29]  G. G. Cameron,et al.  Split-and-merge segmentation of magnetic resonance medical images: performance evaluation and extension to three dimensions. , 1998, Computers and biomedical research, an international journal.

[30]  Sankar K. Pal,et al.  A review on image segmentation techniques , 1993, Pattern Recognit..

[31]  Sankar K. Pal,et al.  RFCM: A Hybrid Clustering Algorithm Using Rough and Fuzzy Sets , 2007, Fundam. Informaticae.

[32]  W. Eric L. Grimson,et al.  Adaptive Segmentation of MRI Data , 1995, CVRMed.

[33]  Aboul Ella Hassanien,et al.  Automatic Unsupervised Segmentation Methods for MRI Based on Modified Fuzzy C-Means , 2008, Fundam. Informaticae.

[34]  M Unser,et al.  Unsupervised connectivity-based thresholding segmentation of midsagittal brain MR images , 1998, Comput. Biol. Medicine.

[35]  M. Brandt,et al.  Estimation of CSF, white and gray matter volumes in hydrocephalic children using fuzzy clustering of MR images. , 1994, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society.

[36]  Sankar K. Pal,et al.  Multispectral image segmentation using the rough-set-initialized EM algorithm , 2002, IEEE Trans. Geosci. Remote. Sens..