Hydrophobic collapse induces changes in the collective protein and hydration low frequency modes

[1]  Lars Skjærven,et al.  WEBnm@ v2.0: Web server and services for comparing protein flexibility , 2014, BMC Bioinformatics.

[2]  Martina Havenith,et al.  New insights into the role of water in biological function: studying solvated biomolecules using terahertz absorption spectroscopy in conjunction with molecular dynamics simulations. , 2014, Journal of the American Chemical Society.

[3]  Lin Zhang,et al.  Hydrogen bonding-assisted thermal conduction in β-sheet crystals of spider silk protein. , 2014, Nanoscale.

[4]  H. Senn,et al.  Terahertz underdamped vibrational motion governs protein-ligand binding in solution , 2014, Nature Communications.

[5]  D. Tobias,et al.  On the Coupling between the Collective Dynamics of Proteins and Their Hydration Water. , 2014, The journal of physical chemistry letters.

[6]  Caroline S. Gorham,et al.  Protein Thermal Conductivity Measured in the Solid State Reveals Anharmonic Interactions of Vibrations in a Fractal Structure. , 2014, The journal of physical chemistry letters.

[7]  Edward H. Snell,et al.  Optical measurements of long-range protein vibrations , 2014, Nature Communications.

[8]  E. J. Arthur,et al.  Crowding induced collective hydration of biological macromolecules over extended distances. , 2014, Journal of the American Chemical Society.

[9]  D. Tobias,et al.  Spatial dependence of protein-water collective hydrogen-bond dynamics. , 2013, Physical review letters.

[10]  K. Schulten,et al.  Misplaced helix slows down ultrafast pressure-jump protein folding , 2013, Proceedings of the National Academy of Sciences.

[11]  Konrad Meister,et al.  Long-range protein–water dynamics in hyperactive insect antifreeze proteins , 2012, Proceedings of the National Academy of Sciences.

[12]  Xiaopeng Huang,et al.  New Secrets of Spider Silk: Exceptionally High Thermal Conductivity and Its Abnormal Change under Stretching , 2012, Advanced materials.

[13]  Peter G. Wolynes,et al.  Chemical physics of protein folding , 1998, Proceedings of the National Academy of Sciences.

[14]  Gregg B Fields,et al.  Correlated structural kinetics and retarded solvent dynamics at the metalloprotease active site , 2011, Nature Structural &Molecular Biology.

[15]  R. K. Mitra,et al.  Do hydration dynamics follow the structural perturbation during thermal denaturation of a protein: a terahertz absorption study. , 2011, Biophysical journal.

[16]  Kevin W Plaxco,et al.  Dielectric spectroscopy of proteins as a quantitative experimental test of computational models of their low-frequency harmonic motions. , 2011, Journal of the American Chemical Society.

[17]  Martina Havenith,et al.  Combining THz spectroscopy and MD simulations to study protein-hydration coupling. , 2010, Methods.

[18]  Martin Gruebele,et al.  Real-time detection of protein-water dynamics upon protein folding by terahertz absorption spectroscopy. , 2008, Angewandte Chemie.

[19]  D. Leitner Energy flow in proteins. , 2008, Annual review of physical chemistry.

[20]  Martin Gruebele,et al.  An extended dynamical hydration shell around proteins , 2007, Proceedings of the National Academy of Sciences.

[21]  S Banu Ozkan,et al.  The protein folding problem: when will it be solved? , 2007, Current opinion in structural biology.

[22]  Martin Gruebele,et al.  Solvent‐tuning the collapse and helix formation time scales of λ6‐85* , 2006 .

[23]  D. Raleigh,et al.  Effect of modulating unfolded state structure on the folding kinetics of the villin headpiece subdomain. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[24]  M. Gruebele,et al.  Kinetic equivalence of the heat and cold structural transitions of λ6–85 , 2005, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[25]  D. Leitner,et al.  Heat flow in proteins: computation of thermal transport coefficients. , 2005, The Journal of chemical physics.

[26]  Osamu Miyashita,et al.  Simple energy landscape model for the kinetics of functional transitions in proteins. , 2005, The journal of physical chemistry. B.

[27]  M. Gruebele,et al.  Single-sweep detection of relaxation kinetics by submicrosecond midinfrared spectroscopy , 2004 .

[28]  David M. Leitner,et al.  Vibrational Energy Transfer and Heat Conduction in a Protein , 2003 .

[29]  M. Gruebele,et al.  Laser Temperature Jump Induced Protein Refolding , 1998 .

[30]  H. Roder,et al.  Evidence for barrier-limited protein folding kinetics on the microsecond time scale , 1998, Nature Structural Biology.

[31]  R. Jacobsen,et al.  Generation and detection of terahertz pulses from biased semiconductor antennas , 1996 .

[32]  M. Gruebele,et al.  A single‐sweep, nanosecond time resolution laser temperature‐jump apparatus , 1996 .

[33]  Chris Sander,et al.  The double cubic lattice method: Efficient approaches to numerical integration of surface area and volume and to dot surface contouring of molecular assemblies , 1995, J. Comput. Chem..

[34]  M. Karplus,et al.  Collective motions in proteins: A covariance analysis of atomic fluctuations in molecular dynamics and normal mode simulations , 1991, Proteins.

[35]  M. Karplus,et al.  Proteins: A Theoretical Perspective of Dynamics, Structure, and Thermodynamics , 1988 .

[36]  A. Shrake,et al.  Environment and exposure to solvent of protein atoms. Lysozyme and insulin. , 1973, Journal of molecular biology.

[37]  B. Lee,et al.  The interpretation of protein structures: estimation of static accessibility. , 1971, Journal of molecular biology.

[38]  G. Czerlinski,et al.  Nanosecond Heating of Aqueous Systems by Giant Laser Pulses , 1965, Nature.

[39]  G. Czerlinski Versatile Temperature Jump Apparatus for Following Chemical Relaxations , 1962 .

[40]  J. C. Jaeger,et al.  Conduction of Heat in Solids , 1952 .