Back-and-forth systems for fuzzy first-order models

Abstract This paper continues the study of model theory for fuzzy logics by addressing the fundamental issue of classifying models according to their first-order theory. Three different definitions of elementary equivalence for fuzzy first-order models are introduced and separated by suitable counterexamples. We propose several back-and-forth conditions, based both on classical two-sorted structures and on non-classical structures, that are useful to obtain elementary equivalence in particular cases as we illustrate with several examples.

[1]  Pilar Dellunde,et al.  Revisiting Ultraproducts in Fuzzy Predicate Logics , 2010, 2010 40th IEEE International Symposium on Multiple-Valued Logic.

[2]  Antonio di Nola,et al.  Fuzzy Models of First Order Languages , 1986, Math. Log. Q..

[3]  Alfred Tarski,et al.  Der Wahrheitsbegriff in den formalisierten Sprachen , 1935 .

[4]  R. Belohlávek Fuzzy Relational Systems: Foundations and Principles , 2002 .

[5]  Vilém Novák On the syntactico-semantical completeness of first-order fuzzy logic. I. Syntax and semantics , 1990, Kybernetika.

[6]  Jörg Flum,et al.  Mathematical logic , 1985, Undergraduate texts in mathematics.

[7]  Marc Roubens,et al.  Fuzzy Preference Modelling and Multicriteria Decision Support , 1994, Theory and Decision Library.

[8]  E. V. Huntington,et al.  The Continuum and Other Types of Serial Order. , 1917 .

[9]  Petr Hájek,et al.  On theories and models in fuzzy predicate logics , 2006, Journal of Symbolic Logic.

[10]  E. Trillas,et al.  in Fuzzy Logic , 2002 .

[11]  Pilar Dellunde Preserving mappings in fuzzy predicate logics , 2012, J. Log. Comput..

[12]  A. Ehrenfeucht An application of games to the completeness problem for formalized theories , 1961 .

[13]  Application des γ-operateurs au Calcul Logique du Premier Echelon , 1956 .

[14]  E. V. Huntington The Continuum, and Other Types of Serial Order, with an Introduction to Cantor's Transfinite Numbers , 2009 .

[15]  Petr Hájek,et al.  A complete many-valued logic with product-conjunction , 1996, Arch. Math. Log..

[16]  Pilar Dellunde,et al.  Applications of ultraproducts: from compactness to fuzzy elementary classes , 2014, Log. J. IGPL.

[17]  Petr Hájek,et al.  Metamathematics of Fuzzy Logic , 1998, Trends in Logic.

[18]  Petr Cintula,et al.  A HENKIN-STYLE PROOF OF COMPLETENESS FOR FIRST-ORDER ALGEBRAIZABLE LOGICS , 2015, The Journal of Symbolic Logic.

[19]  H. Jerome Keisler,et al.  Continuous Model Theory , 1966 .

[20]  Àngel García-Cerdaña,et al.  Löwenheim-Skolem theorems for non-classical first-order algebraizable logics , 2016, Log. J. IGPL.

[21]  V. Novák,et al.  Mathematical Principles of Fuzzy Logic , 1999 .

[22]  Francesc Esteva,et al.  On elementary equivalence in fuzzy predicate logics , 2012, Archive for Mathematical Logic.

[23]  John N. Mordeson,et al.  Fuzzy Graphs and Fuzzy Hypergraphs , 2000, Studies in Fuzziness and Soft Computing.

[24]  Petr Cintula,et al.  A Logical Framework for Graded Predicates , 2017, LORI.

[25]  A. Tarski,et al.  Arithmetical extensions of relational systems , 1958 .

[26]  F. Hausdorff Grundzüge der Mengenlehre , 1914 .

[27]  Chen C. Chang,et al.  Model Theory: Third Edition (Dover Books On Mathematics) By C.C. Chang;H. Jerome Keisler;Mathematics , 1966 .

[28]  Vilém Novák,et al.  Omitting types in fuzzy logic with evaluated syntax , 2006, Math. Log. Q..

[29]  Franco Montagna,et al.  Distinguished algebraic semantics for t-norm based fuzzy logics: Methods and algebraic equivalencies , 2009, Ann. Pure Appl. Log..

[30]  Franco Montagna,et al.  Substructural fuzzy logics , 2007, Journal of Symbolic Logic.