An Overview of Nonlinear Geometrical Methods for Process Control

[1]  A. B. Poore,et al.  On the dynamic behavior of continuous stirred tank reactors , 1974 .

[2]  R. Brockett Nonlinear systems and differential geometry , 1976, Proceedings of the IEEE.

[3]  R. Hirschorn Invertibility of Nonlinear Control Systems , 1979 .

[4]  R. Hirschorn Invertibility of multivariable nonlinear control systems , 1979 .

[5]  C. Desoer,et al.  Foundations of feedback theory for nonlinear dynamical systems , 1980 .

[6]  R. Su On the linear equivalents of nonlinear systems , 1982 .

[7]  L. Hunt,et al.  Global transformations of nonlinear systems , 1983 .

[8]  A. Isidori,et al.  A frequency domain philosophy for nonlinear systems, with applications to stabilization and to adaptive control , 1984, The 23rd IEEE Conference on Decision and Control.

[9]  Christopher I. Byrnes,et al.  Remarks on nonlinear planar control systems which are linearizable by feedback , 1985 .

[10]  J. Kantor,et al.  AN EXOTHERMIC CONTINUOUS STIRRED TANK REACTOR IS FEEDBACK EQUIVALENT TO A LINEAR SYSTEM , 1985 .

[11]  A. Isidori,et al.  Global feedback stabilization of nonlinear systems , 1985, 1985 24th IEEE Conference on Decision and Control.

[12]  J. Kantor,et al.  Global linearization and control of a mixed-culture bioreactor with competition and external inhibition , 1986 .

[13]  Christos Georgakis,et al.  On the use of extensive variables in process dynamics and control , 1986 .

[14]  C. Economou An operator theory approach to nonlinear controller design , 1986 .

[15]  Jeffrey C. Kantor,et al.  LINEAR FEEDBACK EQUIVALENCE AND CONTROL OF AN UNSTABLE BIOLOGICAL REACTOR , 1986 .

[16]  L. Hunt,et al.  A canonical expansion for nonlinear systems , 1986 .