Chromatin Movement in the Maintenance of Genome Stability

Mechanistic analyses based on improved imaging techniques have begun to explore the biological implications of chromatin movement within the nucleus. Studies in both prokaryotes and eukaryotes have shed light on what regulates the mobility of DNA over long distances. Interestingly, in eukaryotes, genomic loci increase their movement in response to double-strand break induction. Break mobility, in turn, correlates with the efficiency of repair by homologous recombination. We review here the source and regulation of DNA mobility and discuss how it can both contribute to and jeopardize genome stability.

[1]  Nevan J Krogan,et al.  INO80 and gamma-H2AX interaction links ATP-dependent chromatin remodeling to DNA damage repair. , 2004, Cell.

[2]  E. Gilson,et al.  Subtelomeric factors antagonize telomere anchoring and Tel1‐independent telomere length regulation , 2006, The EMBO journal.

[3]  M. Kupiec,et al.  The Checkpoint Protein Rad24 of Saccharomyces cerevisiae Is Involved in Processing Double-Strand Break Ends and in Recombination Partner Choice , 2003, Molecular and Cellular Biology.

[4]  K. Nasmyth,et al.  Cohesins: Chromosomal Proteins that Prevent Premature Separation of Sister Chromatids , 1997, Cell.

[5]  T. Cremer,et al.  Quantitative motion analysis of subchromosomal foci in living cells using four-dimensional microscopy. , 1999, Biophysical journal.

[6]  Christophe Zimmer,et al.  Principles of chromosomal organization: lessons from yeast , 2011, The Journal of cell biology.

[7]  J. Theriot,et al.  Bacterial chromosomal loci move subdiffusively through a viscoelastic cytoplasm. , 2010, Physical review letters.

[8]  A S Belmont,et al.  In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition , 1996, The Journal of cell biology.

[9]  J. Brickner,et al.  Gene positioning and expression. , 2011, Current opinion in cell biology.

[10]  Geoffrey J. Barton,et al.  Identification of multiple distinct Snf2 subfamilies with conserved structural motifs , 2006, Nucleic acids research.

[11]  S. Gasser,et al.  Structure and Function in the Budding Yeast Nucleus , 2012, Genetics.

[12]  M. Kupiec,et al.  Analysis of repair mechanism choice during homologous recombination , 2009, Nucleic acids research.

[13]  Xuewen Pan,et al.  The Fun30 ATP-dependent nucleosome remodeler promotes resection of DNA double-strand break ends , 2012, Nature.

[14]  S. Gasser,et al.  How Broken DNA Finds Its Template for Repair : A Computational Approach(Statistical Physics and Topology of Polymers with Ramifications to Structure and Function of DNA and Proteins) , 2011 .

[15]  Pamela A. Silver,et al.  Genome-Wide Localization of the Nuclear Transport Machinery Couples Transcriptional Status and Nuclear Organization , 2004, Cell.

[16]  S. Grigoryev,et al.  Chromatin organization - the 30 nm fiber. , 2012, Experimental cell research.

[17]  Monika Tsai-Pflugfelder,et al.  Targeted INO80 enhances subnuclear chromatin movement and ectopic homologous recombination. , 2012, Genes & development.

[18]  F. Hediger,et al.  Nuclear pore association confers optimal expression levels for an inducible yeast gene , 2006, Nature.

[19]  Florence Hediger,et al.  Separation of silencing from perinuclear anchoring functions in yeast Ku80, Sir4 and Esc1 proteins , 2004, The EMBO journal.

[20]  Jean-Christophe Olivo-Marin,et al.  SAGA interacting factors confine sub-diffusion of transcribed genes to the nuclear envelope , 2006, Nature.

[21]  L. Hartwell,et al.  The RAD9 gene controls the cell cycle response to DNA damage in Saccharomyces cerevisiae. , 1988, Science.

[22]  S. Gasser,et al.  Actin-related proteins in the nucleus: life beyond chromatin remodelers. , 2010, Current opinion in cell biology.

[23]  H. Berg Random Walks in Biology , 2018 .

[24]  B. Cairns,et al.  The biology of chromatin remodeling complexes. , 2009, Annual review of biochemistry.

[25]  H. Scherthan,et al.  The clustering of telomeres and colocalization with Rap1, Sir3, and Sir4 proteins in wild-type Saccharomyces cerevisiae , 1996, The Journal of cell biology.

[26]  Susan M. Gasser,et al.  Live Imaging of Telomeres yKu and Sir Proteins Define Redundant Telomere-Anchoring Pathways in Yeast , 2002, Current Biology.

[27]  Robert J. D. Reid,et al.  The Smc5–Smc6 complex and SUMO modification of Rad52 regulates recombinational repair at the ribosomal gene locus , 2007, Nature Cell Biology.

[28]  S. Gasser,et al.  Chromosome Dynamics in the Yeast Interphase Nucleus , 2001, Science.

[29]  D. Ferguson,et al.  Oncogenic Myc translocations are independent of chromosomal location and orientation of the immunoglobulin heavy chain locus , 2012, Proceedings of the National Academy of Sciences.

[30]  S. Jentsch,et al.  Chromosome-wide Rad51 spreading and SUMO-H2A.Z-dependent chromosome fixation in response to a persistent DNA double-strand break. , 2009, Molecular cell.

[31]  Erik Meijering,et al.  ATP-dependent and independent functions of Rad54 in genome maintenance , 2011, The Journal of cell biology.

[32]  Grant W. Brown,et al.  Functional Targeting of DNA Damage to a Nuclear Pore-Associated SUMO-Dependent Ubiquitin Ligase , 2008, Science.

[33]  H. Tanke,et al.  Chromatin movement visualized with photoactivable GFP-labeled histone H4. , 2008, Differentiation; research in biological diversity.

[34]  Anna Malkova,et al.  Srs2 and Sgs1–Top3 Suppress Crossovers during Double-Strand Break Repair in Yeast , 2003, Cell.

[35]  Ernst H. K. Stelzer,et al.  Structure and dynamics of human interphase chromosome territories in vivo , 1998, Human Genetics.

[36]  Susan M. Gasser,et al.  Increased mobility of double-strand breaks requires Mec1, Rad9 and the homologous recombination machinery , 2012, Nature Cell Biology.

[37]  M. Durante,et al.  Live cell microscopy analysis of radiation-induced DNA double-strand break motion , 2009, Proceedings of the National Academy of Sciences.

[38]  E. O’Shea,et al.  Regulation of Chromatin Remodeling by Inositol Polyphosphates , 2002, Science.

[39]  Roland Eils,et al.  Visualizing telomere dynamics in living mammalian cells using PNA probes , 2003, The EMBO journal.

[40]  J R Savage,et al.  Insight into sites. , 1996, Mutation research.

[41]  Rodney Rothstein,et al.  Increased chromosome mobility facilitates homology search during recombination , 2012, Nature Cell Biology.

[42]  S. Gasser,et al.  The budding yeast nucleus. , 2010, Cold Spring Harbor perspectives in biology.

[43]  J. Haber Mating-Type Genes and MAT Switching in Saccharomyces cerevisiae , 2012, Genetics.

[44]  J. Aten,et al.  Dynamics of DNA Double-Strand Breaks Revealed by Clustering of Damaged Chromosome Domains , 2004, Science.

[45]  A. Miele,et al.  Mechanisms that regulate localization of a DNA double-strand break to the nuclear periphery. , 2009, Genes & development.

[46]  W. Heyer,et al.  Functions of the Snf2/Swi2 family Rad54 motor protein in homologous recombination. , 2011, Biochimica et biophysica acta.

[47]  James G. McNally,et al.  Changes in chromatin structure and mobility in living cells at sites of DNA double-strand breaks , 2006, The Journal of cell biology.

[48]  Aki Minoda,et al.  Double-Strand Breaks in Heterochromatin Move Outside of a Dynamic HP1a Domain to Complete Recombinational Repair , 2011, Cell.

[49]  J. Aten,et al.  Chromatin mobility is increased at sites of DNA double-strand breaks , 2012, Journal of Cell Science.

[50]  ATP-dependent chromatin remodeling in the DNA-damage response , 2012, Epigenetics & Chromatin.

[51]  D. Lydall,et al.  Survival and Growth of Yeast without Telomere Capping by Cdc13 in the Absence of Sgs1, Exo1, and Rad9 , 2010, PLoS genetics.

[52]  J. Theriot,et al.  Nonthermal ATP-dependent fluctuations contribute to the in vivo motion of chromosomal loci , 2012, Proceedings of the National Academy of Sciences.

[53]  Susan M. Gasser,et al.  Regulation of Nuclear Positioning and Dynamics of the Silent Mating Type Loci by the Yeast Ku70/Ku80 Complex , 2008, Molecular and Cellular Biology.

[54]  J. Lieberman,et al.  A phosphatase complex that dephosphorylates γH2AX regulates DNA damage checkpoint recovery , 2006, Nature.

[55]  D. Ward,et al.  Nuclear foci of mammalian Rad51 recombination protein in somatic cells after DNA damage and its localization in synaptonemal complexes. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[56]  Anne E Carpenter,et al.  Long-Range Directional Movement of an Interphase Chromosome Site , 2006, Current Biology.

[57]  N. Krogan,et al.  INO80 and γ-H2AX Interaction Links ATP-Dependent Chromatin Remodeling to DNA Damage Repair , 2004, Cell.

[58]  M. Osley,et al.  Chromatin remodelling at a DNA double-strand break site in Saccharomyces cerevisiae , 2005, Nature.

[59]  Sean R. Collins,et al.  Mec1/Tel1 Phosphorylation of the INO80 Chromatin Remodeling Complex Influences DNA Damage Checkpoint Responses , 2007, Cell.

[60]  Christine Richardson,et al.  Frequent chromosomal translocations induced by DNA double-strand breaks , 2000, Nature.

[61]  Ty C. Voss,et al.  DNA damage defines sites of recurrent chromosomal translocations in B lymphocytes , 2012, Nature.

[62]  Michael J. Zeitz,et al.  Chromatin dynamics is correlated with replication timing , 2009, Chromosoma.

[63]  A. Schmid,et al.  Redundancy of Chromatin Remodeling Pathways for the Induction of the Yeast PHO5 Promoter in Vivo* , 2007, Journal of Biological Chemistry.

[64]  David Lydall,et al.  Histone methyltransferase Dot1 and Rad9 inhibit single-stranded DNA accumulation at DSBs and uncapped telomeres , 2008, The EMBO journal.

[65]  A. Murray,et al.  Interphase chromosomes undergo constrained diffusional motion in living cells , 1997, Current Biology.

[66]  John W. Sedat,et al.  Multiple regimes of constrained chromosome motion are regulated in the interphase Drosophila nucleus , 2001, Current Biology.

[67]  M. Lagally,et al.  In situ visualization of DNA double-strand break repair in human fibroblasts. , 1998, Science.

[68]  Michael S. Becker,et al.  Spatial Organization of the Mouse Genome and Its Role in Recurrent Chromosomal Translocations , 2012, Cell.

[69]  Thomas Ried,et al.  From Silencing to Gene Expression Real-Time Analysis in Single Cells , 2004, Cell.

[70]  Random walks in biology: Howard C. Berg (New, expanded edition), Princeton Press, 152 pages, 1993 , 1994 .

[71]  Michael Lichten,et al.  DNA damage response pathway uses histone modification to assemble a double-strand break-specific cohesin domain. , 2004, Molecular cell.

[72]  S. Gasser,et al.  The Positioning and Dynamics of Origins of Replication in the Budding Yeast Nucleus , 2001, The Journal of cell biology.

[73]  M. Lisby,et al.  A Flp-nick system to study repair of a single protein-bound nick in vivo , 2009, Nature Methods.

[74]  M. Kupiec,et al.  Finding a match: how do homologous sequences get together for recombination? , 2008, Nature Reviews Genetics.

[75]  Barbara Hohn,et al.  Recruitment of the INO80 Complex by H2A Phosphorylation Links ATP-Dependent Chromatin Remodeling with DNA Double-Strand Break Repair , 2004, Cell.

[76]  S. Gasser,et al.  Sir-Mediated Repression Can Occur Independently of Chromosomal and Subnuclear Contexts , 2004, Cell.

[77]  Gaudenz Danuser,et al.  Positional stability of single double-strand breaks in mammalian cells , 2007, Nature Cell Biology.

[78]  D. Spector,et al.  53BP1 promotes non-homologous end joining of telomeres by increasing chromatin mobility , 2008, Nature.

[79]  G. Taucher‐Scholz,et al.  Positional Stability of Damaged Chromatin Domains along Radiation Tracks in Mammalian Cells , 2009, Radiation research.

[80]  Danny Reinberg,et al.  Histones: annotating chromatin. , 2009, Annual review of genetics.

[81]  J. Haber,et al.  The frequency of gene targeting in yeast depends on the number of target copies. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[82]  Wendy A Bickmore,et al.  Chromatin Motion Is Constrained by Association with Nuclear Compartments in Human Cells , 2002, Current Biology.

[83]  K. Nasmyth Cohesin: a catenase with separate entry and exit gates? , 2011, Nature Cell Biology.

[84]  Thomas Cremer,et al.  Chromosome order in HeLa cells changes during mitosis and early G1, but is stably maintained during subsequent interphase stages , 2003, The Journal of cell biology.

[85]  M. Resnick,et al.  Lethality induced by a single site-specific double-strand break in a dispensable yeast plasmid. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[86]  Marco Durante,et al.  DNA double-strand breaks in heterochromatin elicit fast repair protein recruitment, histone H2AX phosphorylation and relocation to euchromatin , 2011, Nucleic acids research.

[87]  E. Segal,et al.  What controls nucleosome positions? , 2009, Trends in genetics : TIG.