Deterministic versus stochastic trends: Detection and challenges

[1] The detection of a trend in a time series and the evaluation of its magnitude and statistical significance is an important task in geophysical research. This importance is amplified in climate change contexts, since trends are often used to characterize long-term climate variability and to quantify the magnitude and the statistical significance of changes in climate time series, both at global and local scales. Recent studies have demonstrated that the stochastic behavior of a time series can change the statistical significance of a trend, especially if the time series exhibits long-range dependence. The present study examines the trends in time series of daily average temperature recorded in 26 stations in the Tuscany region (Italy). In this study a new framework for trend detection is proposed. First two parametric statistical tests, the Phillips-Perron test and the Kwiatkowski-Phillips-Schmidt-Shin test, are applied in order to test for trend stationary and difference stationary behavior in the temperature time series. Then long-range dependence is assessed using different approaches, including wavelet analysis, heuristic methods and by fitting fractionally integrated autoregressive moving average models. The trend detection results are further compared with the results obtained using nonparametric trend detection methods: Mann-Kendall, Cox-Stuart and Spearman's ρ tests. This study confirms an increase in uncertainty when pronounced stochastic behaviors are present in the data. Nevertheless, for approximately one third of the analyzed records, the stochastic behavior itself cannot explain the long-term features of the time series, and a deterministic positive trend is the most likely explanation.

[1]  P. Whittle,et al.  Estimation and information in stationary time series , 1953 .

[2]  D. Burn,et al.  Detection of hydrologic trends and variability , 2002 .

[3]  Demetris Koutsoyiannis,et al.  Statistical analysis of hydroclimatic time series: Uncertainty and insights , 2007 .

[4]  Khaled H. Hamed,et al.  A modified Mann-Kendall trend test for autocorrelated data , 1998 .

[5]  D. Cox,et al.  SOME QUICK SIGN TESTS FOR TREND IN LOCATION AND DISPERSION , 1955 .

[6]  Timothy A. Cohn,et al.  Nature's style: Naturally trendy , 2005 .

[7]  M. Kendall Rank Correlation Methods , 1949 .

[8]  I. Jánosi,et al.  Detrended fluctuation analysis of daily temperature records: Geographic dependence over Australia , 2004, physics/0403120.

[9]  Maria Eduarda Silva,et al.  Long-range dependence in North Atlantic sea level , 2006 .

[10]  M. Taqqu,et al.  Fractionally differenced ARIMA models applied to hydrologic time series: Identification, estimation, and simulation , 1997 .

[11]  杉山 芳雄,et al.  Rank Correlation Methods, M. G. Kendall : 4th edition (1970) 202 pages, 3 diagrams, 10 tabeles Griffin London , 1972 .

[12]  Salvatore Grimaldi,et al.  Linear Parametric Models Applied to Hydrological Series , 2004 .

[13]  Piotr Kokoszka,et al.  Wavelet-domain test for long-range dependence in the presence of a trend , 2008 .

[14]  Demetris Koutsoyiannis,et al.  Uncertainty, entropy, scaling and hydrological stochastics. 2. Time dependence of hydrological processes and time scaling / Incertitude, entropie, effet d'échelle et propriétés stochastiques hydrologiques. 2. Dépendance temporelle des processus hydrologiques et échelle temporelle , 2005 .

[15]  Jürgen P. Kropp,et al.  Trend assessment: applications for hydrology and climate research , 2005 .

[16]  Hans von Storch,et al.  Long‐term persistence in climate and the detection problem , 2006 .

[17]  P. Phillips,et al.  Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root? , 1992 .

[18]  Demetris Koutsoyiannis,et al.  Climate change, the Hurst phenomenon, and hydrological statistics , 2003 .

[19]  David R. Easterling,et al.  Contemporary Changes of the Hydrological Cycle over the Contiguous United States: Trends Derived from In Situ Observations , 2004 .

[20]  Jan Beran,et al.  Statistics for long-memory processes , 1994 .

[21]  J. Timmer,et al.  Tempting long-memory - on the interpretation of DFA results , 2004 .

[22]  T. Ouarda,et al.  Identification of hydrological trends in the presence of serial and cross correlations: A review of selected methods and their application to annual flow regimes of Canadian rivers , 2009 .

[23]  Maria Eduarda Silva,et al.  Time Series Analysis of Sea-Level Records: Characterising Long-Term Variability , 2008 .

[24]  Khaled H. Hamed Trend detection in hydrologic data: The Mann–Kendall trend test under the scaling hypothesis , 2008 .

[25]  W. Willinger,et al.  ESTIMATORS FOR LONG-RANGE DEPENDENCE: AN EMPIRICAL STUDY , 1995 .

[26]  Philipp Sibbertsen,et al.  Log-periodogram estimation of the memory parameter of a long-memory process under trend , 2003 .

[27]  Frederico R. B. Cruz,et al.  Local bootstrap approaches for fractional differential parameter estimation in ARFIMA models , 2006, Comput. Stat. Data Anal..

[28]  C. Diebolt,et al.  A Note On Long Memory Time Series , 2005 .

[29]  Irma J. Terpenning,et al.  STL : A Seasonal-Trend Decomposition Procedure Based on Loess , 1990 .

[30]  Ross McKitrick,et al.  Corrections to the Mann et. al. (1998) Proxy Data Base and Northern Hemispheric Average Temperature Series , 2003 .

[31]  Sheng Yue,et al.  Applicability of prewhitening to eliminate the influence of serial correlation on the Mann‐Kendall test , 2002 .

[32]  M. Kendall,et al.  Rank Correlation Methods , 1949 .

[33]  Scaling and persistence in observed and modeled surface temperature , 2001 .

[34]  H. E. Daniels,et al.  Rank Correlation and Population Models , 1950 .

[35]  W. Härdle,et al.  Bootstrap Methods for Time Series , 2003 .

[36]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[37]  A. Brix,et al.  Long memory in surface air temperature: detection, modeling, and application to weather derivative valuation , 2002 .

[38]  Paul J. Kushner,et al.  Power-Law and Long-Memory Characteristics of the Atmospheric General Circulation , 2009 .

[39]  Sheng Yue,et al.  The influence of autocorrelation on the ability to detect trend in hydrological series , 2002 .

[40]  Demetris Koutsoyiannis,et al.  Nonstationarity versus scaling in hydrology , 2006 .

[41]  P. Phillips Testing for a Unit Root in Time Series Regression , 1988 .

[42]  Demetris Koutsoyiannis The Hurst phenomenon and fractional Gaussian noise made easy , 2002 .

[43]  V. Klemeš The Hurst Phenomenon: A puzzle? , 1974 .

[44]  Todd R. Ogden,et al.  Wavelet Methods for Time Series Analysis , 2002 .

[45]  E. Toth,et al.  Calibration of hydrological models in the spectral domain: An opportunity for scarcely gauged basins? , 2007 .

[46]  H. E. Hurst,et al.  Long-Term Storage Capacity of Reservoirs , 1951 .

[47]  S. Yue,et al.  Power of the Mann–Kendall and Spearman's rho tests for detecting monotonic trends in hydrological series , 2002 .

[48]  J. Geweke,et al.  THE ESTIMATION AND APPLICATION OF LONG MEMORY TIME SERIES MODELS , 1983 .

[49]  S. Barbosa,et al.  Wavelet analysis of the Lisbon and Gibraltar North Atlantic Oscillation winter indices , 2006 .

[50]  H. B. Mann Nonparametric Tests Against Trend , 1945 .

[51]  Glaura C. Franco,et al.  Bootstrap approaches and confidence intervals for stationary and non-stationary long-range dependence processes , 2007 .

[52]  H. Stanley,et al.  Effect of trends on detrended fluctuation analysis. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[53]  O. Edenhofer,et al.  Mitigation from a cross-sectoral perspective , 2007 .

[54]  D. Percival,et al.  On Estimation of the Wavelet Variance BY DONALD B. PERCIVAL , 1995 .

[55]  Glaura C. Franco,et al.  Bootstrap techniques in semiparametric estimation methods for ARFIMA models: A comparison study , 2004, Comput. Stat..

[56]  David B. Stephenson,et al.  Is the North Atlantic Oscillation a random walk , 2000 .

[57]  Henning W. Rust,et al.  Fewer jumps, less memory: Homogenized temperature records and long memory , 2008 .

[58]  M. Colacino,et al.  Trends in the daily intensity of precipitation in Italy from 1951 to 1996 , 2001 .

[59]  Murad S. Taqqu,et al.  Theory and applications of long-range dependence , 2003 .

[60]  C. Granger,et al.  AN INTRODUCTION TO LONG‐MEMORY TIME SERIES MODELS AND FRACTIONAL DIFFERENCING , 1980 .

[61]  V. Reisen,et al.  ESTIMATION OF THE FRACTIONAL DIFFERENCE PARAMETER IN THE ARIMA(p, d, q) MODEL USING THE SMOOTHED PERIODOGRAM , 1994 .

[62]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[63]  D. Percival Analysis of Geophysical Time Series Using Discrete Wavelet Transforms: An Overview , 2008 .

[64]  Anthony C. Davison,et al.  Bootstrap Methods and Their Application , 1998 .

[65]  C. Borror Practical Nonparametric Statistics, 3rd Ed. , 2001 .

[66]  Vincent R. Gray Climate Change 2007: The Physical Science Basis Summary for Policymakers , 2007 .

[67]  P.H.A.J.M. van Gelder,et al.  Detecting long-memory: Monte Carlo simulations and application to daily streamflow processes , 2006 .

[68]  P. Bühlmann Bootstraps for Time Series , 2002 .

[69]  P. Robinson Time Series with Long Memory , 2003 .

[70]  K. Holmgren,et al.  Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data , 2005, Nature.

[71]  K. Trenberth,et al.  Observations: Surface and Atmospheric Climate Change , 2007 .

[72]  J. R. Wallis,et al.  Hydro-Climatological Trends in the Continental United States, 1948-88 , 1994 .

[73]  A. Raftery,et al.  Space-time modeling with long-memory dependence: assessing Ireland's wind-power resource. Technical report , 1987 .

[74]  Manfred Mudelsee,et al.  Long memory of rivers from spatial aggregation , 2007 .

[75]  R. A. Groeneveld,et al.  Practical Nonparametric Statistics (2nd ed). , 1981 .

[76]  Y. Benjamini,et al.  THE CONTROL OF THE FALSE DISCOVERY RATE IN MULTIPLE TESTING UNDER DEPENDENCY , 2001 .

[77]  S. Yue,et al.  The Mann-Kendall Test Modified by Effective Sample Size to Detect Trend in Serially Correlated Hydrological Series , 2004 .

[78]  Donald P. Percival,et al.  On estimation of the wavelet variance , 1995 .

[79]  M. F. Fuller,et al.  Practical Nonparametric Statistics; Nonparametric Statistical Inference , 1973 .

[80]  M. Hughes,et al.  Northern hemisphere temperatures during the past millennium: Inferences, uncertainties, and limitations , 1999 .

[81]  Murad S. Taqqu,et al.  A seasonal fractional ARIMA Model applied to the Nile River monthly flows at Aswan , 2000 .

[82]  Valérie Ventura,et al.  Controlling the Proportion of Falsely Rejected Hypotheses when Conducting Multiple Tests with Climatological Data , 2004 .

[83]  Shlomo Havlin,et al.  Long-term persistence and multifractality of river runoff records: Detrended fluctuation studies , 2003 .