Mixed-initiative synthesized learning approach for web-based CRM

Abstract The issue of customer relationship management has emerged rapidly. Customers have become one of the most important considerations to new companies being built. Accordingly, customer retention is a very important topic. In this paper, we present a mixed-initiative synthesized learning approach for better understanding of customers and the provision of clues for improving customer relationships based on different sources of web customer data. The approach is a combination of hierarchical automatic labeling SOM, decision tree, cross-class analysis, and human tacit experience. The objective of this approach is to hierarchically segment data sources into clusters, automatically label the features of the clusters, discover the characteristics of normal, defected and possibly defected clusters of customers, and provide clues for gaining customer retention.

[1]  Andreas Rauber,et al.  Automatic Labeling of Self-Organizing Maps: Making a Treasure-Map Reveal Its Secrets , 1999, PAKDD.

[2]  Andreas Rauber LabelSOM: on the labeling of self-organizing maps , 1999, IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339).

[3]  T. Kohonen,et al.  Exploratory Data Analysis by the Self-Organizing Map: Structures of Welfare and Poverty in the World , 1996 .

[4]  Kaisa Sere,et al.  Analyzing financial performance with self-organizing maps , 1998, 1998 IEEE International Joint Conference on Neural Networks Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36227).