STED super-resolved microscopy

Stimulated emission depletion (STED) microscopy provides subdiffraction resolution while preserving useful aspects of fluorescence microscopy, such as optical sectioning, and molecular specificity and sensitivity. However, sophisticated microscopy architectures and high illumination intensities have limited STED microscopy's widespread use in the past. Here we summarize the progress that is mitigating these problems and giving substantial momentum to STED microscopy applications. We discuss the future of this method in regard to spatiotemporal limits, live-cell imaging and combination with spectroscopy. Advances in these areas may elevate STED microscopy to a standard method for imaging in the life sciences.

[1]  S. Hell Far-field optical nanoscopy , 2010 .

[2]  S. Hell,et al.  STED microscopy with a supercontinuum laser source. , 2008, Optics express.

[3]  Stefan W. Hell,et al.  Strong signal increase in STED fluorescence microscopy by imaging regions of subdiffraction extent , 2017, Proceedings of the National Academy of Sciences.

[4]  Stefan W. Hell,et al.  Coordinate-targeted fluorescence nanoscopy with multiple off states , 2016, Nature Photonics.

[5]  S. Hell,et al.  Lens-based fluorescence nanoscopy , 2015, Quarterly Reviews of Biophysics.

[6]  Christian Eggeling,et al.  Three-dimensional stimulated emission depletion microscopy of nitrogen-vacancy centers in diamond using continuous-wave light. , 2009, Nano letters.

[7]  U Valentin Nägerl,et al.  STED nanoscopy of actin dynamics in synapses deep inside living brain slices. , 2011, Biophysical journal.

[8]  Emily A. Smith,et al.  Subdiffraction, Luminescence-Depletion Imaging of Isolated, Giant, CdSe/CdS Nanocrystal Quantum Dots , 2013 .

[9]  Gael Moneron,et al.  Nanoscopy in a living multicellular organism expressing GFP. , 2011, Biophysical journal.

[10]  Giuseppe Vicidomini,et al.  STED Nanoscopy with Time-Gated Detection: Theoretical and Experimental Aspects , 2013, PloS one.

[11]  Alberto Diaspro,et al.  Gated‐sted microscopy with subnanosecond pulsed fiber laser for reducing photobleaching , 2016, Microscopy research and technique.

[12]  Alberto Diaspro,et al.  The 2015 super-resolution microscopy roadmap , 2015, Journal of Physics D: Applied Physics.

[13]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[14]  Andrew D Ellington,et al.  Aptamers as potential tools for super-resolution microscopy , 2012, Nature Methods.

[15]  Deming Liu,et al.  Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy , 2017, Nature.

[16]  Johann Engelhardt,et al.  Birefringent device converts a standard scanning microscope into a STED microscope that also maps molecular orientation. , 2010, Optics express.

[17]  Markus Sauer,et al.  Eight years of single-molecule localization microscopy , 2014, Histochemistry and Cell Biology.

[18]  Alberto Diaspro,et al.  Strategies to maximize the performance of a STED microscope. , 2012, Optics express.

[19]  Vladislav V Verkhusha,et al.  Chromophore chemistry of fluorescent proteins controlled by light. , 2014, Current opinion in chemical biology.

[20]  Alf Honigmann,et al.  Coaligned dual-channel STED nanoscopy and molecular diffusion analysis at 20 nm resolution. , 2013, Biophysical journal.

[21]  Peter Dedecker,et al.  Spectroscopic rationale for efficient stimulated-emission depletion microscopy fluorophores. , 2010, Journal of the American Chemical Society.

[22]  Stefan W. Hell,et al.  Multicolour Multilevel STED nanoscopy of Actin/Spectrin Organization at Synapses , 2016, Scientific Reports.

[23]  Alberto Diaspro,et al.  Evaluating image resolution in stimulated emission depletion microscopy , 2018 .

[24]  S. Hell,et al.  Fluorogenic Probes for Multicolor Imaging in Living Cells. , 2016, Journal of the American Chemical Society.

[25]  Edward S. Allgeyer,et al.  Two-colour live-cell nanoscale imaging of intracellular targets , 2016, Nature Communications.

[26]  Pavel Tomancak,et al.  Assessing phototoxicity in live fluorescence imaging , 2017, Nature Methods.

[27]  Stefan W. Hell,et al.  Adaptive-illumination STED nanoscopy , 2017, Proceedings of the National Academy of Sciences.

[28]  M. Booth,et al.  Is phase-mask alignment aberrating your STED microscope? , 2015, Methods and applications in fluorescence.

[29]  A. Diaspro,et al.  Evaluating Image Resolution in STED Microscopy , 2018 .

[30]  Stefan W. Hell,et al.  SiR–Hoechst is a far-red DNA stain for live-cell nanoscopy , 2015, Nature Communications.

[31]  Philip Tinnefeld,et al.  Choosing dyes for cw-STED nanoscopy using self-assembled nanorulers , 2014, Physical chemistry chemical physics : PCCP.

[32]  Brahim Lounis,et al.  Large parallelization of STED nanoscopy using optical lattices. , 2013, Optics express.

[33]  M. Sauer,et al.  Multi-target spectrally resolved fluorescence lifetime imaging microscopy , 2016, Nature Methods.

[34]  Thorsten Staudt,et al.  Far-field optical nanoscopy with reduced number of state transition cycles. , 2011, Optics express.

[35]  Ebrahim Karimi,et al.  Q-plate enabled spectrally diverse orbital-angular- momentum conversion for stimulated emission depletion microscopy , 2015 .

[36]  Johann Engelhardt,et al.  Parallelized STED fluorescence nanoscopy. , 2011, Optics express.

[37]  S. Hell,et al.  Fluorogenic probes for live-cell imaging of the cytoskeleton , 2014, Nature Methods.

[38]  G. Zanghirati,et al.  Towards real-time image deconvolution: application to confocal and STED microscopy , 2013, Scientific Reports.

[39]  Alberto Diaspro,et al.  A novel nanoscopic tool by combining AFM with STED microscopy , 2012, Optical Nanoscopy.

[40]  Mike Friedrich,et al.  STED-SPIM: Stimulated emission depletion improves sheet illumination microscopy resolution. , 2011, Biophysical journal.

[41]  Meng-Tsen Ke,et al.  Super-Resolution Mapping of Neuronal Circuitry With an Index-Optimized Clearing Agent. , 2016, Cell reports.

[42]  A. Rohrbach,et al.  Light-sheet generation in inhomogeneous media using self-reconstructing beams and the STED-principle. , 2016, Optics express.

[43]  Suliana Manley,et al.  A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins. , 2013, Nature chemistry.

[44]  Alberto Diaspro,et al.  STED nanoscopy: a glimpse into the future , 2015, Cell and Tissue Research.

[45]  S. Hell,et al.  Two-color far-field fluorescence nanoscopy. , 2007, Biophysical journal.

[46]  Markus Haltmeier,et al.  Mapping molecules in scanning far-field fluorescence nanoscopy , 2015, Nature Communications.

[47]  C. Eggeling,et al.  Super-resolution Microscopy Reveals Compartmentalization of Peroxisomal Membrane Proteins* , 2016, The Journal of Biological Chemistry.

[48]  Stephan J Sigrist,et al.  Ultrafast, temporally stochastic STED nanoscopy of millisecond dynamics , 2015, Nature Methods.

[49]  H. Leonhardt,et al.  A guide to super-resolution fluorescence microscopy , 2010, The Journal of cell biology.

[50]  S. Hell,et al.  Simultaneous multi-lifetime multi-color STED imaging for colocalization analyses. , 2011, Optics express.

[51]  U Valentin Nägerl,et al.  Two-color STED microscopy of living synapses using a single laser-beam pair. , 2011, Biophysical journal.

[52]  S. Hell,et al.  Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[53]  Stefan W Hell,et al.  Fluorescent dyes with large Stokes shifts for super-resolution optical microscopy of biological objects: a review , 2015, Methods and applications in fluorescence.

[54]  S. E. Irvine,et al.  Fast Sted Microscopy with Continuous Wave Fiber Lasers References and Links , 2022 .

[55]  Martin J Booth,et al.  Auto-aligning stimulated emission depletion microscope using adaptive optics. , 2013, Optics letters.

[56]  Christian Eggeling,et al.  Fluorescence fluctuation spectroscopy in subdiffraction focal volumes. , 2005, Physical review letters.

[57]  S. van de Linde,et al.  Light-induced cell damage in live-cell super-resolution microscopy , 2015, Scientific Reports.

[58]  S. Hell Toward fluorescence nanoscopy , 2003, Nature Biotechnology.

[59]  M. Neil,et al.  Stimulated emission depletion microscopy with a supercontinuum source and fluorescence lifetime imaging. , 2008, Optics letters.

[60]  S. Hell,et al.  Superresolving dendritic spines. , 2013, Biophysical journal.

[61]  Steffen J Sahl,et al.  2000-fold parallelized dual-color STED fluorescence nanoscopy. , 2015, Optics express.

[62]  P. Gao,et al.  A far-red emitting fluorescent marker protein, mGarnet2, for microscopy and STED nanoscopy. , 2017, Chemical communications.

[63]  Alberto Diaspro,et al.  Influence of laser intensity noise on gated CW-STED microscopy , 2014 .

[64]  Lars Meyer,et al.  Dual-color STED microscopy at 30-nm focal-plane resolution. , 2008, Small.

[65]  W. Steen,et al.  Principles of Optics M. Born and E. Wolf, 7th (expanded) edition, Cambridge University Press, Cambridge, 1999, 952pp. £37.50/US $59.95, ISBN 0-521-64222-1 , 2000 .

[66]  Wesley R. Legant,et al.  Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution , 2014, Science.

[67]  S. Hell,et al.  Direct observation of the nanoscale dynamics of membrane lipids in a living cell , 2009, Nature.

[68]  Volker Westphal,et al.  A STED microscope aligned by design. , 2009, Optics express.

[69]  S. Hell,et al.  Multicolour nanoscopy of fixed and living cells with a single STED beam and hyperspectral detection , 2017, Scientific Reports.

[70]  Christian Eggeling,et al.  Macromolecular-scale resolution in biological fluorescence microscopy. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[71]  Marcel A. Lauterbach,et al.  Far-Field Optical Nanoscopy , 2009 .

[72]  Christian Eggeling,et al.  Exploring single-molecule dynamics with fluorescence nanoscopy , 2009 .

[73]  S. Hell,et al.  Spherical nanosized focal spot unravels the interior of cells , 2008, Nature Methods.

[74]  David Unnersjö-Jess,et al.  Super-resolution stimulated emission depletion imaging of slit diaphragm proteins in optically cleared kidney tissue. , 2016, Kidney international.

[75]  S. Hell,et al.  Sharper low-power STED nanoscopy by time gating , 2011, Nature Methods.

[76]  R. Strack Imaging: Death by super-resolution imaging , 2015, Nature Methods.

[77]  Alberto Diaspro,et al.  Nanoscopy and Multidimensional Optical Fluorescence Microscopy , 2010 .

[78]  Christian Eggeling,et al.  A simple and versatile design concept for fluorophore derivatives with intramolecular photostabilization , 2016, Nature Communications.

[79]  Alberto Diaspro,et al.  Single-wavelength two-photon excitation–stimulated emission depletion (SW2PE-STED) superresolution imaging , 2012, Proceedings of the National Academy of Sciences.

[80]  S. Hell,et al.  Stimulated emission depletion (STED) nanoscopy of a fluorescent protein-labeled organelle inside a living cell , 2008, Proceedings of the National Academy of Sciences.

[81]  Stefan W Hell,et al.  Stimulated-emission-depletion microscopy with a multicolor stimulated-Raman-scattering light source. , 2008, Optics letters.

[82]  Alberto Diaspro,et al.  Measurement of nanoscale three-dimensional diffusion in the interior of living cells by STED-FCS , 2017, Nature Communications.

[83]  Stefan W. Hell,et al.  Laser-diode-stimulated emission depletion microscopy , 2003 .

[84]  S. Hell Microscopy and its focal switch , 2008, Nature Methods.

[85]  S. Hell,et al.  Fluorescent Rhodamines and Fluorogenic Carbopyronines for Super‐Resolution STED Microscopy in Living Cells , 2016, Angewandte Chemie.

[86]  S. Hell,et al.  Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. , 1994, Optics letters.

[87]  S. Hell,et al.  Nanoscale resolution in GFP-based microscopy , 2006, Nature Methods.