Well quasi-orders and the functional interpretation

The purpose of this article is to study the role of Godel’s functional interpretation in the extraction of programs from proofs in well quasi-order theory. The main focus is on the interpretation of Nash–Williams’ famous minimal bad sequence construction, and the exploration of a number of much broader problems which are related to this, particularly the question of the constructive meaning of Zorn’s lemma and the notion of recursion over the non-wellfounded lexicographic ordering on infinite sequences.

[1]  Thomas Powell,et al.  The equivalence of bar recursion and open recursion , 2014, Ann. Pure Appl. Log..

[2]  Stefano Berardi,et al.  Interactive Learning-Based Realizability for Heyting Arithmetic with EM1 , 2010, Log. Methods Comput. Sci..

[3]  Georg Kreisel,et al.  On the interpretation of non-finitist proofs—Part I , 1951, Journal of Symbolic Logic.

[4]  C. Nash-Williams On well-quasi-ordering infinite trees , 1963, Mathematical Proceedings of the Cambridge Philosophical Society.

[5]  Y. Ershov Model of Partial Continuous Functionals , 1977 .

[6]  Jeremy Avigad,et al.  Chapter V – Gödel’s Functional (“Dialectica”) Interpretation , 1998 .

[7]  Ulrich Berger,et al.  A computational interpretation of open induction , 2004, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004..

[8]  Paulo Oliva,et al.  Sequential games and optimal strategies , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[9]  Christian Sternagel,et al.  Certified Kruskal's Tree Theorem , 2013, J. Formaliz. Reason..

[10]  Ulrich Kohlenbach,et al.  Applied Proof Theory - Proof Interpretations and their Use in Mathematics , 2008, Springer Monographs in Mathematics.

[11]  Paulo Oliva,et al.  MODIFIED BAR RECURSION AND CLASSICAL DEPENDENT CHOICE , 2004 .

[12]  Thomas Powell,et al.  Applying Gödel's Dialectica Interpretation to Obtain a Constructive Proof of Higman's Lemma , 2012, CL&C.

[13]  C. Spector Provably recursive functionals of analysis: a consistency proof of analysis by an extension of princ , 1962 .

[14]  Martín Hötzel Escardó,et al.  Selection functions, bar recursion and backward induction , 2010, Mathematical Structures in Computer Science.

[15]  Graham Higman,et al.  Ordering by Divisibility in Abstract Algebras , 1952 .

[16]  Dana S. Scott,et al.  Outline of a Mathematical Theory of Computation , 1970 .

[17]  Chetan R. Murthy Extracting Constructive Content From Classical Proofs , 1990 .

[18]  A. Troelstra Metamathematical investigation of intuitionistic arithmetic and analysis , 1973 .

[19]  Paulo Oliva Understanding and Using Spector's Bar Recursive Interpretation of Classical Analysis , 2006, CiE.

[20]  Martín Hötzel Escardó,et al.  Computing Nash Equilibria of Unbounded Games , 2012, Turing-100.

[21]  Dag Normann,et al.  Higher-Order Computability , 2015, Theory and Applications of Computability.

[22]  M. Seisenberger On the Constructive Content of Proofs , 2003 .

[23]  Von Kurt Gödel,et al.  ÜBER EINE BISHER NOCH NICHT BENÜTZTE ERWEITERUNG DES FINITEN STANDPUNKTES , 1958 .

[24]  Jean-Claude Raoult,et al.  Proving Open Properties by Induction , 1988, Inf. Process. Lett..

[25]  Thomas Powell Gödel’s functional interpretation and the concept of learning , 2016, 2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).