Canonical sequence method applied to the anisotropic Heisenberg lattice

[1]  P. Meier,et al.  Ground-state of a two dimensional Heisenberg antiferromagnet , 1998 .

[2]  R. Murawski,et al.  Comparison between Lanczos and linked cluster methods for the Heisenberg antiferromagnet on a square lattice , 1997 .

[3]  P. Kalinay,et al.  The t-expansion study of critical phenomena in quantum systems , 1997 .

[4]  Weihong,et al.  Comparison between linked-cluster expansion methods for the Heisenberg antiferromagnet on the square lattice. , 1995, Physical review. B, Condensed matter.

[5]  P. Meier,et al.  Analytic properties of connected moments expansions , 1994 .

[6]  T. Barnes,et al.  THE 2D HEISENBERG ANTIFERROMAGNET IN HIGH-Tc SUPERCONDUCTIVITY: A Review of Numerical Techniques and Results , 1991 .

[7]  E. Manousakis The spin- 1/2 Heisenberg antiferromagnet on a square lattice and its application to the cuprous oxides , 1991 .

[8]  P. Fulde,et al.  Application of a new projection technique to the 2D Heisenberg Hamiltonian , 1989 .

[9]  Stubbins,et al.  Methods of extrapolating the t-expansion series. , 1988, Physical review. D, Particles and fields.

[10]  Liang,et al.  Some new variational resonating-valence-bond-type wave functions for the spin-1/2 antiferromagnetic Heisenberg model on a square lattice. , 1988, Physical review letters.

[11]  Elser,et al.  Simple variational wave functions for two-dimensional Heisenberg spin-(1/2 antiferromagnets. , 1988, Physical review letters.

[12]  P. Anderson The Resonating Valence Bond State in La2CuO4 and Superconductivity , 1987, Science.

[13]  Cioslowski Connected moments expansion: A new tool for quantum many-body theory. , 1987, Physical review letters.

[14]  D. Horn,et al.  T expansion: A nonperturbative analytic tool for Hamiltonian systems , 1984 .