Convective-Scale Data Assimilation for the Weather Research and Forecasting Model Using the Local Particle Filter

AbstractParticle filters (PFs) are Monte Carlo data assimilation techniques that operate with no parametric assumptions for prior and posterior errors. A data assimilation method introduced recently, called the local PF, approximates the PF solution within neighborhoods of observations, thus allowing for its use in high-dimensional systems. The current study explores the potential of the local PF for atmospheric data assimilation through cloud-permitting numerical experiments performed for an idealized squall line. Using only 100 ensemble members, experiments using the local PF to assimilate simulated radar measurements demonstrate that the method provides accurate analyses at a cost comparable to ensemble filters currently used in weather models. Comparisons between the local PF and an ensemble Kalman filter demonstrate benefits of the local PF for producing probabilistic analyses of non-Gaussian variables, such as hydrometeor mixing ratios. The local PF also provides more accurate forecasts than the ens...

[1]  Jeffrey L. Anderson,et al.  An adaptive covariance inflation error correction algorithm for ensemble filters , 2007 .

[2]  Mingjing Tong,et al.  Ensemble kalman filter assimilation of doppler radar data with a compressible nonhydrostatic model : OSS experiments , 2005 .

[3]  Toshiyuki Imamura,et al.  The 10,240‐member ensemble Kalman filtering with an intermediate AGCM , 2014 .

[4]  Chris Snyder,et al.  A Comparison between the 4DVAR and the Ensemble Kalman Filter Techniques for Radar Data Assimilation , 2005 .

[5]  Thomas A. Jones,et al.  Storm-Scale Data Assimilation and Ensemble Forecasting with the NSSL Experimental Warn-on-Forecast System. Part I: Radar Data Experiments , 2015 .

[6]  Kathryn R. Fossell,et al.  A Real-Time Convection-Allowing Ensemble Prediction System Initialized by Mesoscale Ensemble Kalman Filter Analyses , 2015 .

[7]  Derek J. Posselt,et al.  Nonlinear Parameter Estimation: Comparison of an Ensemble Kalman Smoother with a Markov Chain Monte Carlo Algorithm , 2012 .

[8]  Jeffrey L. Anderson An Ensemble Adjustment Kalman Filter for Data Assimilation , 2001 .

[9]  E. Kalnay,et al.  Balance and Ensemble Kalman Filter Localization Techniques , 2011 .

[10]  Chris Snyder,et al.  Toward a nonlinear ensemble filter for high‐dimensional systems , 2003 .

[11]  R. Handel,et al.  Can local particle filters beat the curse of dimensionality , 2013, 1301.6585.

[12]  Hans R. Künsch,et al.  Localizing the Ensemble Kalman Particle Filter , 2016, 1605.05476.

[13]  P. Leeuwen,et al.  Nonlinear data assimilation in geosciences: an extremely efficient particle filter , 2010 .

[14]  Louis J. Wicker,et al.  On the impact of additive noise in storm-scale EnKF experiments , 2015 .

[15]  David J. Stensrud,et al.  The Impact of Covariance Localization for Radar Data on EnKF Analyses of a Developing MCS: Observing System Simulation Experiments , 2013 .

[16]  Peter Jan van Leeuwen,et al.  Nonlinear Data Assimilation , 2015 .

[17]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[18]  P. Houtekamer,et al.  A Sequential Ensemble Kalman Filter for Atmospheric Data Assimilation , 2001 .

[19]  Louis J. Wicker,et al.  Ensemble Kalman Filter Assimilation of Radar Observations of the 8 May 2003 Oklahoma City Supercell: Influences of Reflectivity Observations on Storm-Scale Analyses , 2011 .

[20]  Louis J. Wicker,et al.  Wind and Temperature Retrievals in the 17 May 1981 Arcadia, Oklahoma, Supercell: Ensemble Kalman Filter Experiments , 2004 .

[21]  C. Snyder,et al.  Assimilation of Simulated Doppler Radar Observations with an Ensemble Kalman Filter , 2003 .

[22]  J. Kepert Covariance localisation and balance in an Ensemble Kalman Filter , 2009 .

[23]  Sebastian Reich,et al.  A Hybrid Ensemble Transform Particle Filter for Nonlinear and Spatially Extended Dynamical Systems , 2015, SIAM/ASA J. Uncertain. Quantification.

[24]  P. Bickel,et al.  Curse-of-dimensionality revisited: Collapse of the particle filter in very large scale systems , 2008, 0805.3034.

[25]  Jeffrey L. Anderson,et al.  The Data Assimilation Research Testbed: A Community Facility , 2009 .

[26]  Patrick Minnis,et al.  Storm-Scale Data Assimilation and Ensemble Forecasting with the NSSL Experimental Warn-on-Forecast System. Part II: Combined Radar and Satellite Data Experiments , 2016 .

[27]  Jeffrey L. Anderson,et al.  Efficient Assimilation of Simulated Observations in a High-Dimensional Geophysical System Using a Localized Particle Filter , 2016 .

[28]  S. Cohn,et al.  Ooce Note Series on Global Modeling and Data Assimilation Construction of Correlation Functions in Two and Three Dimensions and Convolution Covariance Functions , 2022 .

[29]  T. Bengtsson,et al.  Performance Bounds for Particle Filters Using the Optimal Proposal , 2015 .

[30]  C. Snyder,et al.  A Multicase Comparative Assessment of the Ensemble Kalman Filter for Assimilation of Radar Observations. Part I: Storm-Scale Analyses , 2009 .

[31]  P. Bickel,et al.  Obstacles to High-Dimensional Particle Filtering , 2008 .

[32]  Louis J. Wicker,et al.  Additive Noise for Storm-Scale Ensemble Data Assimilation , 2009 .

[33]  Sebastian Reich,et al.  A Nonparametric Ensemble Transform Method for Bayesian Inference , 2012, SIAM J. Sci. Comput..

[34]  Stanley G. Benjamin,et al.  CONVECTIVE-SCALE WARN-ON-FORECAST SYSTEM: A vision for 2020 , 2009 .

[35]  Derek J. Posselt,et al.  A Bayesian Examination of Deep Convective Squall-Line Sensitivity to Changes in Cloud Microphysical Parameters , 2016 .

[36]  Matthias Morzfeld,et al.  Implicit particle filters for data assimilation , 2010, 1005.4002.

[37]  Derek J. Posselt,et al.  Quantification of Cloud Microphysical Parameterization Uncertainty using Radar Reflectivity , 2012 .

[38]  Stephen G. Penny,et al.  A local particle filter for high-dimensional geophysical systems , 2015 .

[39]  David J. Stensrud,et al.  An Observational Study of Derecho-Producing Convective Systems , 2004 .

[40]  T. Vukicevic,et al.  Analysis of the Impact of Model Nonlinearities in Inverse Problem Solving , 2008 .

[41]  Corey K. Potvin,et al.  Progress and challenges with Warn-on-Forecast , 2012 .

[42]  G. Evensen Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .

[43]  J. Whitaker,et al.  Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter , 2001 .

[44]  Matthias Morzfeld,et al.  What the collapse of the ensemble Kalman filter tells us about particle filters , 2015, 1512.03720.

[45]  J. Poterjoy A Localized Particle Filter for High-Dimensional Nonlinear Systems , 2016 .

[46]  Jeffrey L. Anderson A Method for Producing and Evaluating Probabilistic Forecasts from Ensemble Model Integrations , 1996 .

[47]  Derek J. Posselt,et al.  Errors in Ensemble Kalman Smoother Estimates of Cloud Microphysical Parameters , 2014 .

[48]  Chris Snyder,et al.  Model Bias in a Continuously Cycled Assimilation System and Its Influence on Convection-Permitting Forecasts , 2013 .

[49]  Song‐You Hong,et al.  The WRF Single-Moment 6-Class Microphysics Scheme (WSM6) , 2006 .

[50]  H. Kunsch,et al.  Bridging the ensemble Kalman and particle filters , 2012, 1208.0463.

[51]  Peter J. Bickel,et al.  A Moment Matching Ensemble Filter for Nonlinear Non-Gaussian Data Assimilation , 2011 .

[52]  G. Grell,et al.  A North American Hourly Assimilation and Model Forecast Cycle: The Rapid Refresh , 2016 .