Insights into the metamorphic history and origin of flake graphite mineralization at the Graphite Creek graphite deposit, Seward Peninsula, Alaska, USA

[1]  J. Slack,et al.  Diagenetic Barite-Pyrite-Wurtzite formation and redox signatures in Triassic Mudstone, Brooks Range, Northern Alaska , 2021, Chemical Geology.

[2]  A. Valero,et al.  Summary and critical review of the International Energy Agency’s special report: The role of critical minerals in clean energy transitions , 2021 .

[3]  D. Jacob,et al.  Mechanical twinning of monazite expels radiogenic lead , 2020, Geology.

[4]  Håvard Gautneb,et al.  The Graphite Occurrences of Northern Norway, a Review of Geology, Geophysics, and Resources , 2020, Minerals.

[5]  R. Latonen,et al.  The flake graphite prospect of Piippumäki—an example of a high-quality graphite occurrence in a retrograde metamorphic terrain in Finland , 2020, Mineralium Deposita.

[6]  P. Závada,et al.  Decoupled U-Pb date and chemical zonation of monazite in migmatites: The case for disturbance of isotopic systematics by coupled dissolution-reprecipitation , 2020 .

[7]  James V. Jones,et al.  U/PB AGE CONSTRAINTS ON HOST ROCK DEPOSITION AND HIGH-T METAMORPHISM AT THE GRAPHITE CREEK FLAKE GRAPHITE DEPOSIT, SEWARD PENINSULA, ALASKA , 2020 .

[8]  James V. Jones,et al.  Detrital zircon geochronology along a structural transect across the Kahiltna assemblage in the western Alaska Range: Implications for emplacement of the Alexander-Wrangellia-Peninsular terrane against North America , 2019, Geosphere.

[9]  S. Regan,et al.  Constraining the timing and character of crustal melting in the Adirondack Mountains using multi-scale compositional mapping and in-situ monazite geochronology , 2019, American Mineralogist.

[10]  G. Walsh,et al.  Syn-collisional exhumation of hot middle crust in the Adirondack Mountains (New York, USA): Implications for extensional orogenesis in the southern Grenville province , 2019, Geosphere.

[11]  F. Piccoli,et al.  Vein-type graphite deposits in Sri Lanka: The ultimate fate of granulite fluids , 2019, Chemical Geology.

[12]  L. Neymark,et al.  In situ LA-ICPMS U–Pb dating of cassiterite without a known-age matrix-matched reference material: Examples from worldwide tin deposits spanning the Proterozoic to the Tertiary , 2018 .

[13]  Joseph Gambogi,et al.  Draft critical mineral list—Summary of methodology and background information—U.S. Geological Survey technical input document in response to Secretarial Order No. 3359 , 2018 .

[14]  J. Toro,et al.  Circum-Arctic Lithosphere Evolution (CALE) Transect C: displacement of the Arctic Alaska–Chukotka microplate towards the Pacific during opening of the Amerasia Basin of the Arctic , 2017, Special Publications.

[15]  F. H. Moffit Geology of the Nome and Grand Central Quadrangles: Alaska , 2017 .

[16]  S. Regan,et al.  Neoarchean arc magmatism and subsequent collisional orogenesis along the eastern Rae domain, western Churchill Province: Implications for the early growth of Laurentia , 2017 .

[17]  E. Miller,et al.  Neoproterozoic basement history of Wrangel Island and Arctic Chukotka: integrated insights from zircon U–Pb, O and Hf isotopic studies , 2017, Special Publications.

[18]  J. Slack,et al.  Cobalt: Chapter F of critical mineral resources of the United States - Economic and environmental geology and prospects for future supply , 2017 .

[19]  C. Korte,et al.  Hydrothermal flake graphite mineralisation in Paleoproterozoic rocks of south-east Greenland , 2017, Mineralium Deposita.

[20]  P. Goncalves,et al.  Monazite as a monitor of melting, garnet growth and feldspar recrystallization in continental lower crust , 2015 .

[21]  T. Moore,et al.  Provenance and detrital zircon geochronologic evolution of lower Brookian foreland basin deposits of the western Brooks Range, Alaska, and implications for early Brookian tectonism , 2015 .

[22]  K. Meisling,et al.  Closing the Canada Basin: Detrital zircon geochronology relationships between the North Slope of Arctic Alaska and the Franklinian mobile belt of Arctic Canada , 2014 .

[23]  J. Slack,et al.  Reconstruction of an early Paleozoic continental margin based on the nature of protoliths in the Nome Complex, Seward Peninsula, Alaska , 2014 .

[24]  A. G. Harris,et al.  Carbonate rocks of the Seward Peninsula, Alaska: Their correlation and paleogeographic significance , 2014 .

[25]  J. Aleinikoff,et al.  U-Pb detrital zircon geochronology as evidence for the origin of the Nome Complex, northern Alaska, and implications for regional and trans-Arctic correlations , 2014 .

[26]  W. Brand,et al.  Assessment of international reference materials for isotope-ratio analysis (IUPAC Technical Report) , 2014 .

[27]  J. Dumoulin,et al.  Reconstruction of a late proterozoic to devonian continental margin sequence, Northern Alaska, its paleogeographic significance and contained base-metal sulfide deposits , 2014 .

[28]  H. Wada,et al.  Vein graphite deposits: geological settings, origin, and economic significance , 2014, Mineralium Deposita.

[29]  P. O’Sullivan,et al.  Two flysch belts having distinctly different provenance suggest no stratigraphic link between the Wrangellia composite terrane and the paleo-Alaskan margin , 2013 .

[30]  F. Macdonald,et al.  Laurentian origin for the North Slope of Alaska: Implications for the tectonic evolution of the Arctic , 2013 .

[31]  J. Dumoulin,et al.  Lithofacies, age, depositional setting, and geochemistry of the Otuk Formation in the Red Dog District, northwestern Alaska , 2013 .

[32]  J. Huizenga,et al.  Granulites, CO2 and graphite , 2012 .

[33]  P. Vermeesch On the visualisation of detrital age distributions , 2012 .

[34]  J. Hellstrom,et al.  Iolite: Freeware for the visualisation and processing of mass spectrometric data , 2011 .

[35]  F. Corfu,et al.  Geochronology of the Tardree Rhyolite Complex, Northern Ireland: implications for zircon fission track studies, the North Atlantic Igneous Province and the age of the Fish Canyon sanidine standard , 2011 .

[36]  J. Dumoulin,et al.  Bedrock geologic map of the Seward Peninsula, Alaska, and accompanying conodont data , 2011 .

[37]  S. Kamo,et al.  GRENVILLE SKARN TITANITE: POTENTIAL REFERENCE MATERIAL FOR SIMS U–Th–Pb ANALYSIS , 2010 .

[38]  G. C. Martin Mineral Resources of Alaska: Report on Progress of Investigations in 1917 , 2010 .

[39]  G. Gehrels,et al.  Late Proterozoic–Paleozoic evolution of the Arctic Alaska–Chukotka terrane based on U-Pb igneous and detrital zircon ages: Implications for Neoproterozoic paleogeographic reconstructions , 2009 .

[40]  O. Beyssac,et al.  Deposition of highly crystalline graphite from moderate-temperature fluids , 2009 .

[41]  P. O’Sullivan,et al.  Detrital Zircon Geochronology of Cretaceous and Paleogene Strata Across the South-Central Alaskan Convergent Margin , 2009 .

[42]  Shenghong Hu,et al.  Signal enhancement in laser ablation ICP-MS by addition of nitrogen in the central channel gas , 2008 .

[43]  G. Gehrels,et al.  Enhanced precision, accuracy, efficiency, and spatial resolution of U‐Pb ages by laser ablation–multicollector–inductively coupled plasma–mass spectrometry , 2008 .

[44]  R. Wintsch,et al.  Ages and origins of rocks of the Killingworth dome, south-central Connecticut: Implications for the tectonic evolution of southern New England , 2007, American Journal of Science.

[45]  R. Seal Sulfur Isotope Geochemistry of Sulfide Minerals , 2006 .

[46]  M. Brandon,et al.  Raman spectroscopic carbonaceous material thermometry of low-grade metamorphic rocks: Calibration and application to tectonic exhumation in Crete, Greece [rapid communication] , 2005 .

[47]  R. Ketcham,et al.  Apatite Fission-Track Analysis , 2005 .

[48]  L. E. Young A Geologic Framework for Mineralization in the Western Brooks Range, Alaska , 2004 .

[49]  A. G. Harris,et al.  Depositional Settings, Correlation, and Age of Carboniferous Rocks in the Western Brooks Range, Alaska , 2004 .

[50]  R. Korsch,et al.  of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards , 2004 .

[51]  J. Amato,et al.  Geologic map and summary of the evolution of the Kigluaik Mountains gneiss dome, Seward Peninsula, Alaska , 2004 .

[52]  Jean-Noël Rouzaud,et al.  On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy. , 2003, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[53]  James E. Wright,et al.  Dike swarms on Seward Peninsula, Alaska, and their implications for the kinematics of Cretaceous extension in the Bering Strait region , 2003 .

[54]  J. Rouzaud,et al.  Raman spectra of carbonaceous material in metasediments: a new geothermometer , 2002 .

[55]  M. Lanphere,et al.  Precise K–Ar, 40Ar/39Ar, Rb–Sr and U/Pb mineral ages from the 27.5 Ma Fish Canyon Tuff reference standard , 2001 .

[56]  P. Nabelek,et al.  Fertility of metapelites and metagraywackes during leucogranite generation: an example from the Black Hills, U.S.A. , 2000, Earth and Environmental Science Transactions of the Royal Society of Edinburgh.

[57]  R. Chandrajith,et al.  Sri Lanka–Madagascar Gondwana Linkage: Evidence for a Pan‐African Mineral Belt , 1999, The Journal of Geology.

[58]  A. Calvert,et al.  Diapiric ascent and cooling of a sillimanite gneiss dome revealed by 40Ar/39Ar thermochronology: the Kigluaik Mountains, Seward Peninsula, Alaska , 1999, Geological Society, London, Special Publications.

[59]  P. Renne,et al.  Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating , 1998 .

[60]  J. Toro,et al.  Deformation of the northern circum-Pacific margin: Variations in tectonic style and plate-tectonic implications , 1995 .

[61]  P. O’Sullivan,et al.  Cretaceous to Recent extension in the Bering Strait region, Alaska , 1995 .

[62]  C. Rubin,et al.  Structural and metamorphic relations in the southwest Seward Peninsula, Alaska: Crustal extension and the unroofing of blueschists , 1995 .

[63]  R. Harris Geochemistry and tectonomagmatic affinity of the Misheguk massif, Brooks Range ophiolite, Alaska , 1995 .

[64]  K. Hannula,et al.  Reconsideration of the age of blueschist facies metamorphism on the Seward Peninsula, Alaska, based on phengite40Ar/39Ar results , 1995 .

[65]  James E. Wright,et al.  Magmatically induced metamorphism and deformation in the Kigluaik gneiss dome, Seward Peninsula, Alaska , 1994 .

[66]  K. Bird,et al.  Geology of northern Alaska , 1994 .

[67]  J. D. Miller,et al.  Precise U‐Pb ages of Duluth Complex and related mafic intrusions, northeastern Minnesota: Geochronological insights to physical, petrogenetic, paleomagnetic, and tectonomagmatic processes associated with the 1.1 Ga Midcontinent Rift System , 1993 .

[68]  D. Harding,et al.  Age and evolution of Western Brooks Range ophiolites, Alaska: Results from 40Ar/39Ar thermochronometry , 1993 .

[69]  T. Little,et al.  Strain-collapsed metamorphic isograds in a sillimanite gneiss dome, Seward Peninsula, Alaska , 1992 .

[70]  S. Box,et al.  Tectonic setting of the Yukon‐Koyukuk Basin and its borderlands, western Alaska , 1989 .

[71]  B. W. Evans,et al.  Metamorphic Evolution of the Seward Peninsula Blueschist Terrane , 1989 .

[72]  W. McDonough,et al.  Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes , 1989, Geological Society, London, Special Publications.

[73]  J. Lieberman,et al.  Thermal overprint on blueschists of the Seward Peninsula: The Lepontine in Alaska , 1988 .

[74]  B. Patrick Synmetamorphic structural evolution of the Seward Peninsula blueschist terrane, Alaska , 1988 .

[75]  K. Silva Mineralization and wall-rock alteration at the Bogala graphite deposit, Bulathkohupitiya, Sri Lanka , 1987 .

[76]  M. Katz Graphite deposits of Sri Lanka: a consequence of granulite facies metamorphism , 1987 .

[77]  J. Proffett,et al.  Geology and Mineralization of the Ambler District, Northwestern Alaska , 1986 .

[78]  D. Rumble,et al.  Carbon isotope geochemistry of graphite vein deposits from New Hampshire, U.S.A. , 1986 .

[79]  D. Rumble,et al.  Hydrothermal graphite in New Hampshire: Evidence of carbon mobility during regional metamorphism , 1986 .

[80]  D. Canfield,et al.  The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales , 1986 .

[81]  D. Kaufman,et al.  Preliminary geologic map and fossil data, Solomon, Bendeleben, and southern Kotzebue quadrangles, Seward Peninsula, Alaska , 1986 .

[82]  S. Thurston Structure, petrology, and metamorphic history of the Nome Group blueschist terrane, Salmon Lake area, Seward Peninsula, Alaska , 1985 .

[83]  B. W. Evans,et al.  Regional progressive high‐pressure metamorphism, Seward Peninsula, Alaska , 1984 .

[84]  I. Tailleur,et al.  Stratigraphy, structure, and palinspastic synthesis of the western Brooks Range, northwestern Alaska , 1983 .

[85]  R. Steiger,et al.  Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology , 1977 .

[86]  J. Kramers,et al.  Approximation of terrestrial lead isotope evolution by a two-stage model , 1975 .

[87]  G. Wasserburg,et al.  U-Th-Pb systematics in lunar highland samples from the Luna 20 and Apollo 16 missions , 1972 .

[88]  R. Coats Graphite Deposits on the North Side of the Kigluiak Mountains, Seward Peninsula, Alaska , 1944 .

[89]  G. Plafker,et al.  The Geology of Alaska , 1870, The American Naturalist.