Reducing Hajós' 4-coloring conjecture to 4-connected graphs
暂无分享,去创建一个
[1] André E. Kézdy,et al. Do 3n - 5 edges force a subdivision of K5? , 1991, J. Graph Theory.
[2] Paul A. Catlin,et al. Hajós' graph-coloring conjecture: Variations and counterexamples , 1979, J. Comb. Theory, Ser. B.
[3] Paul Erdös,et al. On the conjecture of hajós , 1981, Comb..
[4] Carsten Thomassen,et al. Some remarks on Hajo's' conjecture , 2005, J. Comb. Theory, Ser. B.
[5] Paul D. Seymour,et al. Graph Minors. XIX. Well-quasi-ordering on a surface , 2004, J. Comb. Theory, Ser. B.
[6] M. Watkins,et al. Cycles and Connectivity in Graphs , 1967, Canadian Journal of Mathematics.
[7] P. Erdős. Some remarks on chromatic graphs , 1967 .
[8] Daniela Kühn,et al. Topological Minors in Graphs of Large Girth , 2002, J. Comb. Theory, Ser. B.
[9] K. Wagner. Über eine Eigenschaft der ebenen Komplexe , 1937 .
[10] Wolfgang Mader,et al. 3n − 5 Edges Do Force a Subdivision of , 1998, Comb..
[11] Daniela Kühn,et al. Improved Bounds for Topological Cliques in Graphs of Large Girth , 2006, SIAM J. Discret. Math..
[12] Robin Thomas,et al. Hadwiger's conjecture forK6-free graphs , 1993, Comb..
[13] L. Lovász. Combinatorial problems and exercises , 1979 .