Practical Iron-Catalyzed Allylations of Aryl Grignard Reagents

An operationally simple iron-catalyzed reductive cross-coupling reaction between aryl halides and allyl electrophiles has been developed. The underlying domino process exhibits high versatility with respect to the allylic leaving group (acetate, tosylate, diethyl phosphate, methyl carbonate, trimethylsilanolate, methanethiolate, chloride, bromide) and high economic and environmental sustainability with respect to the catalyst system (0.2-5 mol% tris(acetylacetonato)iron(III), ligand-free) and reaction conditions (tetrahydrofuran, 0 °C, 45 min).

[1]  A. J. von Wangelin,et al.  On direct iron-catalyzed cross-coupling reactions , 2010 .

[2]  Montserrat Diéguez,et al.  Biaryl phosphites: new efficient adaptative ligands for Pd-catalyzed asymmetric allylic substitution reactions. , 2010, Accounts of chemical research.

[3]  B. Nachtsheim,et al.  A review of new developments in the Friedel–Crafts alkylation – From green chemistry to asymmetric catalysis , 2010, Beilstein journal of organic chemistry.

[4]  Daniel A. Everson,et al.  Nickel-catalyzed reductive cross-coupling of aryl halides with alkyl halides. , 2010, Journal of the American Chemical Society.

[5]  Chandra M. R. Volla,et al.  Ligandless Iron-Catalyzed Desulfinylative C-C Allylation Reactions using Grignard Reagents and Alk-2-enesulfonyl Chlorides , 2009 .

[6]  K. Tomioka,et al.  Efficient chiral N-heterocyclic carbene/copper(I)-catalyzed asymmetric allylic arylation with aryl Grignard reagents. , 2009, Angewandte Chemie.

[7]  B. Lipshutz,et al.  Zn-mediated, Pd-catalyzed cross-couplings in water at room temperature without prior formation of organozinc reagents. , 2009, Journal of the American Chemical Society.

[8]  B. Plietker,et al.  Präformierte π‐Allyl‐Eisen‐Komplexe als potente, definierte Katalysatoren für die allylische Substitution , 2009 .

[9]  B. Plietker,et al.  Preformed pi-allyl iron complexes as potent, well-defined catalysts for the allylic substitution. , 2009, Angewandte Chemie.

[10]  P. Knochel,et al.  Preparation of polyfunctional arylmagnesium, arylzinc, and benzylic zinc reagents by using magnesium in the presence of LiCl. , 2009, Chemistry.

[11]  J. D. de Vries,et al.  Soluble iron nanoparticles as cheap and environmentally benign alkene and alkyne hydrogenation catalysts. , 2009, Chemical communications.

[12]  J. Cvengroš,et al.  Coming of age: sustainable iron-catalyzed cross-coupling reactions. , 2009, ChemSusChem.

[13]  C. Kappe,et al.  Die C‐C‐Kreuzkupplung nach Liebeskind und Srogl , 2009 .

[14]  C. Kappe,et al.  The Liebeskind-Srogl C-C cross-coupling reaction. , 2009, Angewandte Chemie.

[15]  Yoshihiko Yamamoto,et al.  Synthesis of chromans via [3 + 3] cyclocoupling of phenols with allylic alcohols using a Mo/o-chloranil catalyst system. , 2009, Organic letters.

[16]  M. Mayer,et al.  Domino‐Eisen‐Katalyse: direkte Aryl‐Alkyl‐Kreuzkupplung , 2009 .

[17]  A. Jacobi von Wangelin,et al.  Domino iron catalysis: direct aryl-alkyl cross-coupling. , 2009, Angewandte Chemie.

[18]  H. Ohmiya,et al.  Palladium-catalyzed gamma-selective and stereospecific allyl-aryl coupling between allylic acetates and arylboronic acids. , 2008, Journal of the American Chemical Society.

[19]  E. Bauer,et al.  Recent Advances in Iron Catalysis in Organic Synthesis , 2008 .

[20]  C. Gosmini,et al.  Synthesis of functionalised diarylmethanes via a cobalt-catalysed cross-coupling of arylzinc species with benzyl chlorides. , 2008, Chemical communications.

[21]  Alois Fürstner,et al.  The promise and challenge of iron-catalyzed cross coupling. , 2008, Accounts of chemical research.

[22]  A. Fürstner,et al.  Preparation, structure, and reactivity of nonstabilized organoiron compounds. Implications for iron-catalyzed cross coupling reactions. , 2008, Journal of the American Chemical Society.

[23]  Karma R. Sawyer,et al.  The mechanism for iron-catalyzed alkene isomerization in solution , 2008 .

[24]  C. Bolm,et al.  Iron-catalysed carbon-heteroatom and heteroatom-heteroatom bond forming processes. , 2008, Chemical Society reviews.

[25]  F Bakkali,et al.  Biological effects of essential oils--a review. , 2008, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.

[26]  Phil Ho Lee,et al.  Xantphos as an efficient ligand for palladium-catalyzed cross-coupling reactions of aryl bromides and triflates with allyl acetates and indium. , 2008, The Journal of organic chemistry.

[27]  B. Plietker,et al.  Ligand‐Dependent Mechanistic Dichotomy in Iron‐Catalyzed Allylic Substitutions: σ‐Allyl versus π‐Allyl Mechanism , 2008 .

[28]  Bernd Plietker,et al.  Ligandenabhängige mechanistische Dichotomie in Eisen‐katalysierten allylischen Substitutionen: σ‐Allyl‐ kontra π‐Allyl‐Mechanismus , 2008 .

[29]  Shengming Ma,et al.  Metallkatalysierte enantioselektive Allylierungen in der asymmetrischen Synthese , 2008 .

[30]  Zhan Lu,et al.  Metal-catalyzed enantioselective allylation in asymmetric synthesis. , 2008, Angewandte Chemie.

[31]  J. Neudörfl,et al.  On the quantitative recycling of Raney–Nickel catalysts on a lab-scale , 2007 .

[32]  P. Knochel,et al.  Directed ortho insertion (DoI): a new approach to functionalized aryl and heteroaryl zinc reagents. , 2007, Journal of the American Chemical Society.

[33]  M. Rychlik,et al.  Impact of estragole and other odorants on the flavour of anise and tarragon , 2007 .

[34]  Bernd Plietker Die regioselektive eisenkatalysierte allylische Aminierung , 2006 .

[35]  B. Plietker Regioselective iron-catalyzed allylic amination. , 2006, Angewandte Chemie.

[36]  Koichiro Oshima,et al.  Asymmetrische allylische Substitution mit chiralen Kupferkomplexen als Katalysatoren , 2005 .

[37]  H. Yorimitsu,et al.  Recent progress in asymmetric allylic substitutions catalyzed by chiral copper complexes. , 2005, Angewandte Chemie.

[38]  S. Nolan,et al.  Simple (imidazol-2-ylidene)-Pd-acetate complexes as effective precatalysts for sterically hindered Suzuki-Miyaura couplings. , 2005, Organic letters.

[39]  J. Yoshida,et al.  Iron-catalyzed cross-coupling of alkenyl sulfides with Grignard reagents. , 2005, Organic letters.

[40]  P. Chirik,et al.  Preparation and molecular and electronic structures of iron(0) dinitrogen and silane complexes and their application to catalytic hydrogenation and hydrosilation. , 2004, Journal of the American Chemical Society.

[41]  D. Berkowitz,et al.  In situ enzymatic screening (ISES) of P,N-ligands for Ni(0)-mediated asymmetric intramolecular allylic amination. , 2004, Tetrahedron, asymmetry.

[42]  D. Berkowitz,et al.  Following an ISES lead: the first examples of asymmetric Ni(0)-mediated allylic amination. , 2004, Organic letters.

[43]  Aiko Hasegawa,et al.  Trimethylsilyl pentafluorophenylbis(trifluoromethanesulfonyl)methide as a super Lewis acid catalyst for the condensation of trimethylhydroquinone with isophytol. , 2003, Angewandte Chemie.

[44]  B. Trost,et al.  Asymmetric transition-metal-catalyzed allylic alkylations: applications in total synthesis. , 2003, Chemical reviews.

[45]  E. Nakamura,et al.  Iron-catalyzed regio- and stereoselective ring opening of [2.2.1]- and [3.2.1]oxabicyclic alkenes with a Grignard reagent. , 2003, Organic letters.

[46]  J. Périchon,et al.  Cobalt-catalyzed direct electrochemical cross-coupling between aryl or heteroaryl halides and allylic acetates or carbonates. , 2003, The Journal of organic chemistry.

[47]  V. Gerusz,et al.  A Novel Palladium Catalyst for Cross‐Coupling of Allyl Acetates with Arylboronic Acids , 2002 .

[48]  Herradura Ps,et al.  Copper-mediated cross-coupling of aryl boronic acids and alkyl thiols. , 2000 .

[49]  Yuichi Kobayashi,et al.  NICKEL-CATALYZED COUPLING REACTION OF 1,3-DISUBSTITUTED SECONDARY ALLYLIC CARBONATES AND LITHIUM ARYL- AND ALKENYLBORATES , 1996 .

[50]  J. Périchon,et al.  Nickel-Catalyzed Direct Electrochemical Cross-Coupling between Aryl Halides and Activated Alkyl Halides. , 1996, The Journal of organic chemistry.

[51]  D. Gage,et al.  Chemical composition of essential oil from the root bark of Sassafras albidum. , 1995, Planta medica.

[52]  M. Periasamy,et al.  Isomerization of 1-alkenes using the Na2Fe(CO)4/CuCl and Na2Fe(CO)4/BrCH2CH2 Br reagent systems , 1995 .

[53]  A. Hashmi,et al.  Iron-Catalyzed Coupling of Tricyclo[4.1.0.02,7]hept-1-ylmagnesium Bromide and Related Grignard Reagents with Propargylic and Allylic Halides† , 1994 .

[54]  N. Nomura,et al.  Transition metal-catalyzed substitution reaction of allylic phosphates with Grignard reagents , 1994 .

[55]  S. Efange,et al.  Acyclic analogues of 2-(4-phenylpiperidino)cyclohexanol (vesamicol): conformationally mobile inhibitors of vesicular acetylcholine transport. , 1991, Journal of medicinal chemistry.

[56]  K. Nicholas,et al.  Iron-mediated aromatic allylation , 1987 .

[57]  E. Michelotti,et al.  THE SYNTHESIS OF NATURALLY OCCURRING C6-C3 AND C6-C3-C6 SUBSTANCES BY THE USE OF LOW-VALENT NICKEL-MEDIATED GRIGNARD REACTIONS , 1983 .

[58]  E. Corey,et al.  A study of cross coupling reactions between halides and anionic manganese, iron, and cobalt alkyls , 1970 .

[59]  J. Ritter,et al.  A new reaction of nitriles; synthesis of t-carbinamines. , 1948, Journal of the American Chemical Society.