All-at-Once Solution if Time-Dependent PDE-Constrained Optimisation Problems

Time-dependent partial differential equations (PDEs) play an important role in applied mathematics and many other areas of science. One-shot methods try to compute the solution to these problems in a single iteration that solves for all time-steps at the same time. In this paper, we look at one-shot approaches for the optimal control of time-dependent PDEs and focus on the fast solution of these problems. The use of Krylov subspace solvers together with an efficient preconditioner allows for minimal storage requirements. We solve only approximate time-evolutions for both forward and adjoint problem and compute accurate solutions of a given control problem only at convergence of the overall Krylov subspace iteration. We show that our approach can give competitive results for a variety of problem formulations.

[1]  H. Weyl Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung) , 1912 .

[2]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[3]  M. Saunders,et al.  Solution of Sparse Indefinite Systems of Linear Equations , 1975 .

[4]  R. Fletcher Conjugate gradient methods for indefinite systems , 1976 .

[5]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.

[6]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[7]  J. W. Ruge,et al.  4. Algebraic Multigrid , 1987 .

[8]  A. Wathen Realistic Eigenvalue Bounds for the Galerkin Mass Matrix , 1987 .

[9]  J. Pasciak,et al.  A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems , 1988 .

[10]  G. Stewart Perturbation theory for the singular value decomposition , 1990 .

[11]  P. Wesseling An Introduction to Multigrid Methods , 1992 .

[12]  I. Duff Sparse numerical linear algebra: Direct methods and preconditioning , 1996 .

[13]  L. Luksan,et al.  Indefinitely preconditioned inexact Newton method for large sparse equality constrained non‐linear programming problems , 1998 .

[14]  Gene H. Golub,et al.  A Note on Preconditioning for Indefinite Linear Systems , 1999, SIAM J. Sci. Comput..

[15]  Nicholas I. M. Gould,et al.  Constraint Preconditioning for Indefinite Linear Systems , 2000, SIAM J. Matrix Anal. Appl..

[16]  Mark Frederick Hoemmen,et al.  An Overview of Trilinos , 2003 .

[17]  Jonathan J. Hu,et al.  ML 3.1 smoothed aggregation user's guide. , 2004 .

[18]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[19]  Howard C. Elman,et al.  Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics , 2014 .

[20]  F. Tröltzsch Optimale Steuerung partieller Differentialgleichungen , 2005 .

[21]  R.D. Falgout,et al.  An Introduction to Algebraic Multigrid Computing , 2006, Computing in Science & Engineering.

[22]  Jonathan J. Hu,et al.  ML 5.0 Smoothed Aggregation Users's Guide , 2006 .

[23]  An Introduction to Algebraic Multigrid , 2006 .

[24]  Barry Lee,et al.  Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..

[25]  W. Bangerth,et al.  deal.II—A general-purpose object-oriented finite element library , 2007, TOMS.

[26]  M. Hinze,et al.  A Hierarchical Space-Time Solver for Distributed Control of the Stokes Equation , 2008 .

[27]  A. Wathen,et al.  Chebyshev semi-iteration in preconditioning for problems including the mass matrix. , 2008 .

[28]  H. Thorne Properties of linear systems in PDE-constrained optimization. Part I: Distributed control 1 , 2009 .

[29]  Stefan Ulbrich,et al.  Optimization with PDE Constraints , 2008, Mathematical modelling.

[30]  A. Wathen,et al.  Preconditioning for active set and projected gradient methods assemi-smooth Newton methods for PDE-constrained optimization with control constraints , 2009 .

[31]  Andrew J. Wathen,et al.  Optimal Solvers for PDE-Constrained Optimization , 2010, SIAM J. Sci. Comput..

[32]  T. Rees,et al.  Block‐triangular preconditioners for PDE‐constrained optimization , 2010, Numer. Linear Algebra Appl..

[33]  Michele Benzi,et al.  A preconditioning technique for a class of PDE-constrained optimization problems , 2011, Adv. Comput. Math..