Hyperdominance in Amazonian forest carbon cycling

While Amazonian forests are extraordinarily diverse, the abundance of trees is skewed strongly towards relatively few ‘hyperdominant' species. In addition to their diversity, Amazonian trees are a key component of the global carbon cycle, assimilating and storing more carbon than any other ecosystem on Earth. Here we ask, using a unique data set of 530 forest plots, if the functions of storing and producing woody carbon are concentrated in a small number of tree species, whether the most abundant species also dominate carbon cycling, and whether dominant species are characterized by specific functional traits. We find that dominance of forest function is even more concentrated in a few species than is dominance of tree abundance, with only ≈1% of Amazon tree species responsible for 50% of carbon storage and productivity. Although those species that contribute most to biomass and productivity are often abundant, species maximum size is also influential, while the identity and ranking of dominant species varies by function and by region.

Kalle Ruokolainen | Christopher Baraloto | Yadvinder Malhi | Anthony Di Fiore | Bruno Hérault | Joey Talbot | Juliana Schietti | Gabriela Lopez-Gonzalez | Simon L Lewis | Oliver L Phillips | Marielos Peña-Claros | Lourens Poorter | Marcos Silveira | Timothy R Baker | Terry L Erwin | Damien Bonal | Julien Engel | J. Terborgh | A. Di Fiore | O. Phillips | T. Killeen | L. Aragão | Y. Malhi | M. Gloor | J. Chave | S. Lewis | M. Réjou‐Méchain | S. Fauset | T. Feldpausch | G. V. D. van der Heijden | J. Barroso | A. Araujo-Murakami | L. Poorter | H. Ramírez-Angulo | M. Silveira | V. Vos | T. Baker | A. Prieto | C. Quesada | A. Rudas | M. Steininger | S. Vieira | T. Erwin | W. Laurance | S. Laurance | D. Neill | P. N. Vargas | N. Pitman | R. Salomão | G. Lopez-Gonzalez | J. Peacock | L. Arroyo | D. Bonal | J. Stropp | E. A. Dávila | A. Andrade | P. D. de Camargo | E. Arets | J. Comiskey | G. Pickavance | J. Talbot | J. Pipoly | H. ter Steege | J. Camargo | B. Marimon | F. Costa | I. Vieira | R. Brienen | G. Aymard C. | C. Levis | J. Schietti | P. Souza | M. Toledo | C. Baraloto | C. Cerón | J. Engel | P. Pétronelli | E. V. Torre | O. Wang | R. Zagt | M. Alexiades | I. Huamantupa-Chuquimaco | K. Ruokolainen | B. Hérault | R. Boot | M. Peña-Claros | Ben Hur Marimon Júnior | Raquel S. Thomas | E. H. Coronado | J. Licona | N. P. Camacho | Z. Restrepo | R. Umetsu | E. A. de Oliveira | R. Herrera | A. Alarcón | W. Castro | V. Moscoso | P. Morandi | Michelle O. Johnson | C. Stahl | Everton C Almeida | Peter van der Hout | Aurélie Dourdain | R. Burnham | William F Laurance | Marc Steininger | Julie Peacock | Luzmila Arroyo | Adriana Prieto | Agustín Rudas | Ima Célia Guimarães Vieira | P. van der Meer | Maxime Réjou-Méchain | Nigel C A Pitman | Michelle O Johnson | Manuel Gloor | Roel J W Brienen | Ted R Feldpausch | Sophie Fauset | Carlos A Quesada | Ana Andrade | Alejandro Araujo-Murakami | Hirma Ramirez-Angulo | Juliana Stropp | Raquel Thomas | Marisol Toledo | Armando Torres-Lezama | Vincent A Vos | Ophelia Wang | Pascal Pétronelli | M. B. X. Valadão | Juan Carlos Licona | Flávia R C Costa | Wendeson Castro | Jerôme Chave | Percy Núñez Vargas | Rafael Herrera | Aurélie Dourdain | Luiz E O C Aragão | David Neill | Miguel Alexiades | Hans ter Steege | Geertje van der Heijden | Jorcely Barroso | Zorayda Restrepo | Timothy J Killeen | Alfredo Alarcón | Nikée Groot | Carolina Levis | Emilio Vilanova Torre | Gerardo A Aymard C | Simone A Vieira | Rafael P Salomão | Beatriz S Marimon | Euridice N Honorio Coronado | Susan G W Laurance | James A Comiskey | Priscila Souza | Isau Huamantupa-Chuquimaco | Abel Monteagudo M | José Luís C Camargo | Elodie Allie | John W Terborgh | Peter J van der Meer | Ben-Hur Marimon Junior | Rene G A Boot | Basil Stergios | Eric Arets | Victor Chama Moscoso | Clement Stahl | Esteban Álvarez Davila | Paulo S Morandi | Edmar Almeida de Oliveira | Marco B X Valadão | Roderick J Zagt | Peter van der Hout | Patricia Alvarez Loayza | John J Pipoly | Carlos E Cerón | Nadir C Pallqui Camacho | Ricardo K Umetsu | Plínio Barbosa de Camargo | Robyn J Burnham | Carlos Reynel Rodríguez | Adriane Esquivel Muelbert | Georgia C Pickavance | A. Torres‐Lezama | Nikée E. Groot | Everton Almeida | Abel Monteagudo M | Elodie Allié | B. Stergios | C. R. Rodríguez | E. Almeida | Joey Talbot | Zorayda Restrepo | Isau Huamantupa‐Chuquimaco | Nikée Groot

[1]  Sean C. Thomas,et al.  The worldwide leaf economics spectrum , 2004, Nature.

[2]  S. Hubbell,et al.  Directional changes in the species composition of a tropical forest. , 2011, Ecology.

[3]  Mingkui Cao,et al.  Net primary and ecosystem production and carbon stocks of terrestrial ecosystems and their responses to climate change , 1998 .

[4]  P. Balvanera,et al.  Quantifying the evidence for biodiversity effects on ecosystem functioning and services. , 2006, Ecology letters.

[5]  Maosheng Zhao,et al.  Drought-Induced Reduction in Global Terrestrial Net Primary Production from 2000 Through 2009 , 2010, Science.

[6]  Oliver L. Phillips,et al.  Amazon palm biomass and allometry , 2013 .

[7]  Stephen Sitch,et al.  Analysing Amazonian forest productivity using a new individual and trait-based model (TFS v.1) , 2014 .

[8]  Zhenyuan Lu,et al.  The taxonomic name resolution service: an online tool for automated standardization of plant names , 2013, BMC Bioinformatics.

[9]  J. Chave,et al.  Structure and Biomass of Four Lowland Neotropical Forests , 2004 .

[10]  O. Phillips,et al.  FIELD MANUAL FOR PLOT ESTABLISHMENT AND REMEASUREMENT (RAINFOR) , 2005 .

[11]  Wilfried Thuiller,et al.  Rare Species Support Vulnerable Functions in High-Diversity Ecosystems , 2013, PLoS biology.

[12]  J. Chambers,et al.  Tree allometry and improved estimation of carbon stocks and balance in tropical forests , 2005, Oecologia.

[13]  J. Terborgh,et al.  Hyperdominance in the Amazonian Tree Flora , 2013, Science.

[14]  F. Wittmann,et al.  Tree species composition and diversity gradients in white‐water forests across the Amazon Basin , 2006 .

[15]  J. Terborgh,et al.  Tree height integrated into pantropical forest biomass estimates , 2012 .

[16]  O. Phillips,et al.  An international network to monitor the structure, composition and dynamics of Amazonian forests (RAINFOR) , 2002 .

[17]  O. Phillips,et al.  ForestPlots.net: a web application and research tool to manage and analyse tropical forest plot data , 2011 .

[18]  D. Nepstad,et al.  Mortality of large trees and lianas following experimental drought in an Amazon forest. , 2007, Ecology.

[19]  J. Terborgh,et al.  Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites , 2014, Global ecology and biogeography : a journal of macroecology.

[20]  D. A. King,et al.  Height-diameter allometry of tropical forest trees , 2010 .

[21]  Mark C. Vanderwel,et al.  Methods to estimate aboveground wood productivity from long-term forest inventory plots , 2014 .

[22]  O. Phillips,et al.  Effect of 7 yr of experimental drought on vegetation dynamics and biomass storage of an eastern Amazonian rainforest. , 2010, The New phytologist.

[23]  Yadvinder Malhi,et al.  Basin-wide variations in foliar properties of Amazonian forest: phylogeny, soils and climate. , 2009 .

[24]  Simon L Lewis,et al.  Drought-induced shifts in the floristic and functional composition of tropical forests in Ghana. , 2012, Ecology letters.

[25]  O. Phillips,et al.  Field Manual for plot establishment and remeasurement , 2002 .

[26]  Douglas Sheil,et al.  Drought, fire and tree survival in a Borneo rain forest, East Kalimantan, Indonesia , 2005 .

[27]  O. Phillips,et al.  Contrasting patterns of diameter and biomass increment across tree functional groups in Amazonian forests , 2008, Oecologia.

[28]  Simon Scheiter,et al.  Next-generation dynamic global vegetation models: learning from community ecology. , 2013, The New phytologist.

[29]  T. Lovejoy,et al.  Conservation: Rainforest fragmentation kills big trees , 2000, Nature.

[30]  J. Slik,et al.  Soil nutrients affect spatial patterns of aboveground biomass and emergent tree density in southwestern Borneo , 2008, Oecologia.

[31]  Robert J. Pabst,et al.  Rate of tree carbon accumulation increases continuously with tree size , 2014, Nature.

[32]  A. Fitter,et al.  COMPARATIVE ANALYSES OF ECOLOGICAL CHARACTERISTICS OF BRITISH ANGIOSPERMS , 1994 .

[33]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[34]  R. Condit,et al.  Pervasive alteration of tree communities in undisturbed Amazonian forests , 2004, Nature.

[35]  James C. Stegen,et al.  Variation in above-ground forest biomass across broad climatic gradients , 2011 .

[36]  D. Clark,et al.  Tree growth inference and prediction when the point of measurement changes: modelling around buttresses in tropical forests , 2009, Journal of Tropical Ecology.

[37]  Brian J. Enquist,et al.  Long‐term change within a Neotropical forest: assessing differential functional and floristic responses to disturbance and drought , 2011 .

[38]  S. Andelman,et al.  Drought-mortality relationships for tropical forests. , 2010, The New phytologist.

[39]  J. Chave,et al.  Towards a Worldwide Wood Economics Spectrum 2 . L E a D I N G D I M E N S I O N S I N W O O D F U N C T I O N , 2022 .

[40]  D. Lindenmayer,et al.  Global Decline in Large Old Trees , 2012, Science.