Effect of adrenaline and phorbol myristate acetate or bacterial lipopolysaccharide on stimulation of pathways of macrophage glucose, glutamine and O2 metabolism. Evidence for cyclic AMP-dependent protein kinase mediated inhibition of glucose-6-phosphate dehydrogenase and activation of NADP+-dependen
暂无分享,去创建一个
Adrenaline has recently been shown to stimulate both glucose metabolism and H2O2 release by macrophages but the activity of the key pentose phosphate pathway enzyme, glucose-6-phosphate dehydrogenase (which generates the NADPH crucial for the reduction of molecular oxygen), was reduced under these conditions [Costa Rosa, Safi, Cury and Curi (1992) Biochem. Pharmacol. 44, 2235-2241]. We report here that adrenaline activates another NADPH-producing enzyme, NADP(+)-dependent 'malic' enzyme, while also inhibiting glucose-6-phosphate dehydrogenase, via cyclic AMP-dependent protein kinase (PKA) activation. Regulation of glucose-6-phosphate dehydrogenase activity by PKA has not been reported elsewhere. The sparing of some glucose from pentose phosphate pathway consumption may be important in the provision of glycerol 3-phosphate which in the macrophage may be required for new phospholipid synthesis. Glutamine oxidation was also stimulated by adrenaline thus providing increased substrate (malate) for NADP(+)-dependent 'malic' enzyme and therefore shifting some of the burden of NADPH production from glucose to glutamine metabolism. We also report a novel synergistic effect of adrenaline and some bacterial products and/or gamma-interferon in stimulating secretory and metabolic pathways in macrophages which may be a part of a larger network of signals that lead to enhanced macrophage activity.