Wind energy estimates by use of a diagnostic model

A diagnostic model is a relatively simple and practical tool for modeling the wind flow of the boundary layer in complex terrain. The model begins with a wind analysis based on available surface wind reports and geostrophic winds (computed from pressure data). The height of the boundary layer top (upper surface of the computational domain) is prescribed to fit local conditions. Using the continuity equation in terrain-following coordinates, the winds at mesh points are adjusted to produce nondivergence while maintaining the original vertical component of vorticity. The method of computing the nondivergent winds uses “direct alterations.” This method may be useful for other modeling purposes and will be described. Data for a long period (usually a year) are analyzed to obtain eigenvectors and the associated time series of their coefficients at each observation time. The model is run only for the five or six eigenvectors that explain most of the variance. The wind field at any particular time is reconstructed from the eigenvector solutions and their appropriate coefficients. Comparisons of model results with measured winds at sites representing different types of terrain will be shown. The accuracy and economy of the model make it a useful tool for estimating wind energy and also for giving wind fields for low-level diffusion models.