SRAM Cells for Embedded Systems
暂无分享,去创建一个
[1] S. Natarajan,et al. SE5 - SRAM design in the nanoscale era , 2005, ISSCC. 2005 IEEE International Digest of Technical Papers. Solid-State Circuits Conference, 2005..
[2] Anna W. Topol,et al. Stable SRAM cell design for the 32 nm node and beyond , 2005, Digest of Technical Papers. 2005 Symposium on VLSI Technology, 2005..
[3] P. Bai,et al. A 65nm logic technology featuring 35nm gate lengths, enhanced channel strain, 8 Cu interconnect layers, low-k ILD and 0.57 /spl mu/m/sup 2/ SRAM cell , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..
[4] N. Vallepalli,et al. A 3-GHz 70-mb SRAM in 65-nm CMOS technology with integrated column-based dynamic power supply , 2005, IEEE Journal of Solid-State Circuits.
[5] S. Kosonocky,et al. Fluctuation limits & scaling opportunities for CMOS SRAM cells , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..
[6] Kaushik Roy,et al. A forward body-biased low-leakage SRAM cache: device, circuit and architecture considerations , 2005, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.
[7] T. Fukai,et al. Understanding Random Threshold Voltage Fluctuation by Comparing Multiple Fabs and Technologies , 2007, 2007 IEEE International Electron Devices Meeting.
[8] N. Kasai,et al. A 512 Kbit low-voltage NV-SRAM with the size of a conventional SRAM , 2001, 2001 Symposium on VLSI Circuits. Digest of Technical Papers (IEEE Cat. No.01CH37185).
[9] E. Seevinck,et al. Static-noise margin analysis of MOS SRAM cells , 1987 .
[10] M. Yamaoka,et al. SRAM Circuit With Expanded Operating Margin and Reduced Stand-By Leakage Current Using Thin-BOX FD-SOI Transistors , 2006, IEEE Journal of Solid-State Circuits.
[11] N. Vallepalli,et al. A 3-GHz 70MB SRAM in 65nm CMOS technology with integrated column-based dynamic power supply , 2005, ISSCC. 2005 IEEE International Digest of Technical Papers. Solid-State Circuits Conference, 2005..
[12] Shin Min Kang,et al. CMOS Digital Integrated Cir-cuits: Analysis and Design , 2002 .
[13] K. Roy,et al. Modeling and estimation of failure probability due to parameter variations in nano-scale SRAMs for yield enhancement , 2004, 2004 Symposium on VLSI Circuits. Digest of Technical Papers (IEEE Cat. No.04CH37525).
[14] Marios C. Papaefthymiou,et al. Constant-load energy recovery memory for efficient high-speed operation , 2004, Proceedings of the 2004 International Symposium on Low Power Electronics and Design (IEEE Cat. No.04TH8758).
[15] R. Engelbrecht,et al. DIGEST of TECHNICAL PAPERS , 1959 .
[16] Borivoje Nikolic,et al. Design Trade-offs of a 6 T FinFET SRAM Cell in the Presence of Variations , 2007 .
[17] Farhana Sheikh,et al. The Impact of Device-Width Quantization on Digital Circuit Design Using FinFET Structures , 2022 .
[18] A.P. Chandrakasan,et al. A 256 kb 65 nm 8T Subthreshold SRAM Employing Sense-Amplifier Redundancy , 2008, IEEE Journal of Solid-State Circuits.
[19] A. Sedra. Microelectronic circuits , 1982 .
[20] A. Ogura,et al. Sub-10-nm planar-bulk-CMOS devices using lateral junction control , 2003, IEEE International Electron Devices Meeting 2003.
[21] Gary K. Yeap,et al. Practical Low Power Digital VLSI Design , 1997 .
[22] N. Vallepalli,et al. SRAM design on 65-nm CMOS technology with dynamic sleep transistor for leakage reduction , 2005, IEEE Journal of Solid-State Circuits.
[23] Jan M. Rabaey,et al. SRAM leakage suppression by minimizing standby supply voltage , 2004, International Symposium on Signals, Circuits and Systems. Proceedings, SCS 2003. (Cat. No.03EX720).
[24] K. Takeda,et al. A read-static-noise-margin-free SRAM cell for low-V/sub dd/ and high-speed applications , 2005, ISSCC. 2005 IEEE International Digest of Technical Papers. Solid-State Circuits Conference, 2005..
[25] Naveen Verma,et al. Design considerations for ultra-low energy wireless microsensor nodes , 2005, IEEE Transactions on Computers.
[26] Zheng Guo,et al. FinFET-based SRAM design , 2005, ISLPED '05. Proceedings of the 2005 International Symposium on Low Power Electronics and Design, 2005..
[27] Kaushik Roy,et al. Low-Power CMOS VLSI Circuit Design , 2000 .
[28] Jan M. Rabaey,et al. Digital Integrated Circuits , 2003 .
[29] Anantha P. Chandrakasan,et al. Subthreshold Circuit Techniques , 2004 .
[30] R.H. Dennard,et al. An 8T-SRAM for Variability Tolerance and Low-Voltage Operation in High-Performance Caches , 2008, IEEE Journal of Solid-State Circuits.
[31] Masahiro Nomura,et al. A read-static-noise-margin-free SRAM cell for low-VDD and high-speed applications , 2006, IEEE Journal of Solid-State Circuits.
[32] Donggun Park,et al. Characteristics of the full CMOS SRAM cell using body-tied TG MOSFETs (bulk FinFETs) , 2006, IEEE Transactions on Electron Devices.
[33] A.P. Chandrakasan,et al. A 256-kb 65-nm Sub-threshold SRAM Design for Ultra-Low-Voltage Operation , 2007, IEEE Journal of Solid-State Circuits.
[34] Zhiyu Liu,et al. Characterization of a Novel Nine-Transistor SRAM Cell , 2008, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.
[35] Joachim Keinert,et al. Scaling beyond the 65 nm node with FinFET-DGCMOS , 2003, Proceedings of the IEEE 2003 Custom Integrated Circuits Conference, 2003..
[36] Kaushik Roy,et al. Estimation of delay variations due to random-dopant fluctuations in nanoscale CMOS circuits , 2005 .
[37] J. Meindl,et al. The impact of intrinsic device fluctuations on CMOS SRAM cell stability , 2001, IEEE J. Solid State Circuits.
[38] A. Chandrakasan,et al. A 180-mV subthreshold FFT processor using a minimum energy design methodology , 2005, IEEE Journal of Solid-State Circuits.