Symmetry Maps of Free-Form Curve Segments via Wave Propagation

This paper presents an approach for computing the symmetries (skeletons) of an edge map consisting of a collection of curve segments. This approach is a combination of analytic computations in the style of computational geometry and discrete propagations on a grid in the style of the numerical solutions of PDE's. Specifically, waves from each of the initial curve segments are initialized and propagated as a discrete wavefront along discrete directions. In addition, to avoid error built up due to the discrete nature of propagation, shockwaves are detected and explicitly propagated along a secondary dynamic grid. The propagation of shockwaves, integrated with the propagation of the wavefront along discrete directions, leads to an exact simulation of propagation by the Eikonal equation. The resulting symmetries are simply the collection of shockwaves formed in this process which can be manipulated locally, exactly, and efficiently under local changes in an edge map (gap completion, removal of spurious elements, etc.). The ability to express grouping operations in the language of symmetry maps makes it an appropriate intermediate representation between low-level edge maps and high level object hypotheses.

[1]  Narendra Ahuja,et al.  Extraction of early perceptual structure in dot patterns: Integrating region, boundary, and component gestalt , 1989, Comput. Vis. Graph. Image Process..

[2]  D. T. Lee,et al.  Medial Axis Transformation of a Planar Shape , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Gabriella Sanniti di Baja Well-Shaped, Stable, and Reversible Skeletons from the (3, 4)-Distance Transform , 1994, J. Vis. Commun. Image Represent..

[4]  Olaf Kübler,et al.  Hierarchic Voronoi skeletons , 1995, Pattern Recognit..

[5]  Gabriella Sanniti di Baja,et al.  Ridge points in Euclidean distance maps , 1992, Pattern Recognit. Lett..

[6]  Alfred M. Bruckstein,et al.  Pruning Medial Axes , 1998, Comput. Vis. Image Underst..

[7]  Ching Y. Suen,et al.  An Evaluation of Parallel Thinning Algorithms for Character Recognition , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Stephen M. Pizer,et al.  Hierarchical Shape Description Via the Multiresolution Symmetric Axis Transform , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Benjamin B. Kimialems,et al.  Curve Evolution, Wave Propagation, and Mathematical Morphology , 1998 .

[11]  Alan Liu,et al.  Multiscale Medial Analysis of Medical Images , 1993, IPMI.

[12]  Frederic Fol Leymarie,et al.  Simulating the Grassfire Transform Using an Active Contour Model , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Philip N. Klein,et al.  A tree-edit-distance algorithm for comparing simple, closed shapes , 2000, SODA '00.

[14]  R. Farouki,et al.  Voronoi diagram and medial axis algorithm for planar domains with curved boundaries — II: Detailed algorithm description , 1999 .

[15]  Rida T. Farouki,et al.  Computing Point/Curve and Curve/Curve Bisectors , 1992, IMA Conference on the Mathematics of Surfaces.

[16]  Azriel Rosenfeld,et al.  Sequential Operations in Digital Picture Processing , 1966, JACM.

[17]  Frederic Fol Leymarie,et al.  Fast raster scan distance propagation on the discrete rectangular lattice , 1992, CVGIP Image Underst..

[18]  J. Kevorkian,et al.  Partial Differential Equations: Analytical Solution Techniques , 1990 .

[19]  Jin J. Chou Voronoi diagrams for planar shapes , 1995, IEEE Computer Graphics and Applications.

[20]  Philip N. Klein,et al.  Computing the Edit-Distance between Unrooted Ordered Trees , 1998, ESA.

[21]  Stephen M. Pizer,et al.  Object representation by cores: Identifying and representing primitive spatial regions , 1995, Vision Research.

[22]  Chee-Keng Yap,et al.  AnO(n logn) algorithm for the voronoi diagram of a set of simple curve segments , 1987, Discret. Comput. Geom..

[23]  R. Farouki,et al.  The bisector of a point and a plane parametric curve , 1994, Comput. Aided Geom. Des..

[24]  S.W. Zucker,et al.  Fragment grouping via the principle of perceptual occlusion , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[25]  E. Rouy,et al.  A viscosity solutions approach to shape-from-shading , 1992 .

[26]  Ching Y. Suen,et al.  Thinning Methodologies - A Comprehensive Survey , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[28]  Robert L. Ogniewicz,et al.  Discrete Voronoi skeletons , 1992 .

[29]  J. Smoller Shock Waves and Reaction-Diffusion Equations , 1983 .

[30]  L. Nackman,et al.  Automatic mesh generation using the symmetric axis transformation of polygonal domains , 1992, Proc. IEEE.

[31]  Ingemar Ragnemalm Neighborhoods for distance transformations using ordered propagation , 1992, CVGIP Image Underst..

[32]  Ching Y. Suen,et al.  A Method for Selecting Constrained Hand-Printed Character Shapes for Machine Recognition , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[33]  Philip N. Klein,et al.  Indexing based on edit-distance matching of shape graphs , 1998, Other Conferences.

[34]  Kazuo Murota,et al.  A Fast Voronoi-Diagram Algorithm With Quaternary Tree Bucketing , 1984, Inf. Process. Lett..

[35]  T. Pavlidis A thinning algorithm for discrete binary images , 1980 .

[36]  Hinnik Eggers,et al.  Two Fast Euclidean Distance Transformations in Z2Based on Sufficient Propagation , 1998, Comput. Vis. Image Underst..

[37]  Tyng-Luh Liu,et al.  Approximate tree matching and shape similarity , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[38]  Christoph M. Hoffmann,et al.  Eliminating extraneous solutions in curve and surface operations , 1991, Int. J. Comput. Geom. Appl..

[39]  Andrew Zisserman,et al.  Using a mixed wave/ diffusion process to elicit the symmetry set , 1989, Image Vis. Comput..

[40]  M. Iri,et al.  Construction of the Voronoi diagram for 'one million' generators in single-precision arithmetic , 1992, Proc. IEEE.

[41]  Gabriella Sanniti di Baja,et al.  A Width-Independent Fast Thinning Algorithm , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[42]  Benjamin B. Kimia,et al.  Perceptual organization via the symmetry map and symmetry transforms , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[43]  G. Borgefors Distance transformations in arbitrary dimensions , 1984 .

[44]  J. Shah,et al.  A computationally efficient shape analysis via level sets , 1996, Proceedings of the Workshop on Mathematical Methods in Biomedical Image Analysis.

[45]  Yaorong Ge,et al.  On the Generation of Skeletons from Discrete Euclidean Distance Maps , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[46]  R. Farouki,et al.  Voronoi diagram and medial axis algorithm for planar domains with curved boundaries I. Theoretical foundations , 1999 .

[47]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[48]  Luigi P. Cordella,et al.  From Local Maxima to Connected Skeletons , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[49]  Carlo Arcelli,et al.  Pattern thinning by contour tracing , 1981 .

[50]  Martin D. Levine,et al.  Annular symmetry operators: a method for locating and describing objects , 1995, Proceedings of IEEE International Conference on Computer Vision.

[51]  Seth J. Teller,et al.  Assisted articulation of closed polygonal models , 1998, SIGGRAPH '98.

[52]  Fernand Meyer Digital Euclidean skeletons , 1990, Other Conferences.

[53]  Kaleem Siddiqi,et al.  A shock grammar for recognition , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[54]  J A Sethian,et al.  A fast marching level set method for monotonically advancing fronts. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[55]  Kaleem Siddiqi,et al.  Geometric Shock-Capturing ENO Schemes for Subpixel Interpolation, Computation and Curve Evolution , 1997, CVGIP Graph. Model. Image Process..

[56]  Franz Aurenhammer,et al.  Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.

[57]  H. Blum Biological shape and visual science. I. , 1973, Journal of theoretical biology.

[58]  R. LeVeque Numerical methods for conservation laws , 1990 .

[59]  Vincent Torre,et al.  Localization and Noise in Edge Detection , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[60]  S. Zucker,et al.  Toward a computational theory of shape: an overview , 1990, eccv 1990.

[61]  Roland T. Chin,et al.  Analysis of Thinning Algorithms Using Mathematical Morphology , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[62]  Roberto Cipolla,et al.  Skeletonization using an extended Euclidean distance transform , 1995, Image Vis. Comput..

[63]  Martin Held,et al.  On the Computational Geometry of Pocket Machining , 1991, Lecture Notes in Computer Science.

[64]  Benjamin B. Kimia,et al.  Shocks from images: propagation of orientation elements , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[65]  S. Osher,et al.  High-order essentially nonsocillatory schemes for Hamilton-Jacobi equations , 1990 .

[66]  Gabriella Sanniti di Baja,et al.  A One-Pass Two-Operation Process to Detect the Skeletal Pixels on the 4-Distance Transform , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[67]  Benjamin B. Kimia,et al.  On the intrinsic reconstruction of shape from its symmetries , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[68]  Charles R. Dyer,et al.  Shape Smoothing Using Medial Axis Properties , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[69]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[70]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[71]  Jayant Shah,et al.  Extraction of Shape Skeletons from Grayscale Images , 1997, Comput. Vis. Image Underst..

[72]  Gabriella Sanniti di Baja,et al.  Euclidean skeleton via centre-of-maximal-disc extraction , 1993, Image Vis. Comput..

[73]  Anil K. Jain,et al.  A medical axis transform algorithm for compression and vectorization of document images , 1989, International Conference on Acoustics, Speech, and Signal Processing,.

[74]  Kim L. Boyer,et al.  Perceptual organization in computer vision: a review and a proposal for a classificatory structure , 1993, IEEE Trans. Syst. Man Cybern..

[75]  Luc Vincent,et al.  Exact Euclidean distance function by chain propagations , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[76]  Song-Chun Zhu,et al.  Stochastic Jump-Diffusion Process for Computing Medial Axes in Markov Random Fields , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[77]  Otfried Cheong,et al.  The Voronoi Diagram of Curved Objects , 1995, SCG '95.

[78]  Yung-Sheng Chen,et al.  A comparison of some one-pass parallel thinnings , 1990, Pattern Recognit. Lett..

[79]  Q. Ye The signed Euclidean distance transform and its applications , 1988, [1988 Proceedings] 9th International Conference on Pattern Recognition.

[80]  Anil K. Jain,et al.  Medial axis representation and encoding of scanned documents , 1991, J. Vis. Commun. Image Represent..

[81]  H. Blum Biological shape and visual science (part I) , 1973 .

[82]  Markus Ilg,et al.  Voronoi skeletons: theory and applications , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[83]  Ben J. H. Verwer,et al.  Improved metrics in image processing applied to the Hilditch skeleton , 1988, [1988 Proceedings] 9th International Conference on Pattern Recognition.

[84]  Martin D. Levine,et al.  Multiple Resolution Skeletons , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[85]  Benjamin B. Kimia,et al.  Shock-based approach for indexing of image databases using shape , 1997, Other Conferences.

[86]  Ulrich Eckhardt,et al.  Shape descriptors for non-rigid shapes with a single closed contour , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[87]  P. Danielsson Euclidean distance mapping , 1980 .

[88]  M. Styner,et al.  Hybrid boundary-medial shape description for biologically variable shapes , 2000, Proceedings IEEE Workshop on Mathematical Methods in Biomedical Image Analysis. MMBIA-2000 (Cat. No.PR00737).

[89]  Ugo Montanari,et al.  A Method for Obtaining Skeletons Using a Quasi-Euclidean Distance , 1968, J. ACM.