Two-Parameter Regularization Method for a Nonlinear Backward Heat Problem with a Conformable Derivative

In this paper, we consider the nonlinear inverse-time heat problem with a conformable derivative concerning the time variable. This problem is severely ill posed. A new method on the modified integral equation based on two regularization parameters is proposed to regularize this problem. Numerical results are presented to illustrate the efficiency of the proposed method.

[1]  Dumitru Baleanu,et al.  New exact solutions of Burgers’ type equations with conformable derivative , 2017 .

[2]  Erkan Nane,et al.  Stochastic solutions of Conformable fractional Cauchy problems , 2016, 1606.07010.

[3]  M. Shishlenin,et al.  Regularization of backward parabolic equations in Banach spaces by generalized Sobolev equations , 2023, Journal of Inverse and Ill-posed Problems.

[4]  Thabet Abdeljawad,et al.  On conformable fractional calculus , 2015, J. Comput. Appl. Math..

[5]  Ngo Van Hoa,et al.  On the axisymmetric backward heat equation with non-zero right hand side: Regularization and error estimates , 2018, J. Comput. Appl. Math..

[6]  Mostafa Eslami,et al.  Exact traveling wave solutions to the fractional coupled nonlinear Schrodinger equations , 2016, Appl. Math. Comput..

[7]  Ulrich Tautenhahn,et al.  Optimality for ill-posed problems under general source conditions , 1998 .

[8]  Nguyen Van Duc,et al.  Regularization of parabolic equations backward in time by a non-local boundary value problem method , 2010 .

[9]  Won Sang Chung,et al.  Fractional Newton mechanics with conformable fractional derivative , 2015, J. Comput. Appl. Math..

[10]  D. O’Regan,et al.  Regularization and error estimates for an inverse heat problem under the conformable derivative , 2018 .

[11]  D. Anderson,et al.  Properties of the Katugampola fractional derivative with potential application in quantum mechanics , 2015 .

[12]  D. D. Trong,et al.  Regularization and error estimate for the nonlinear backward heat problem using a method of integral equation , 2009 .

[13]  Xiang-Tuan Xiong,et al.  Fourier regularization for a backward heat equation , 2007 .

[14]  Ngo Van Hoa,et al.  Determination temperature of a backward heat equation with time-dependent coefficients , 2012 .

[15]  A. Alsaedi,et al.  New properties of conformable derivative , 2015 .

[16]  Tran Thi Khieu,et al.  Stabilizing the nonlinear spherically symmetric backward heat equation via two-parameter regularization method , 2017 .

[17]  Yücel Çenesiz,et al.  The solutions of time and space conformable fractional heat equations with conformable Fourier transform , 2015 .

[18]  T. Khanh,et al.  Two-parameter regularization method for an axisymmetric inverse heat problem , 2017 .

[19]  I. Hammad,et al.  Fractional Fourier Series with Applications , 2014 .

[20]  M. Sababheh,et al.  A new definition of fractional derivative , 2014, J. Comput. Appl. Math..