Analytical and Experimental Investigation on A Dynamic Thermo-Sensitive Electrical Parameter With Maximum $dI_{C}/dt$ During Turn-off for High Power Trench Gate/Field-Stop IGBT Modules

In this paper, a dynamic thermo-sensitive electrical parameter (DTSEP) for extracting the junction temperature of the trench gate/field-stop insulated gate bipolar transistor (IGBT) modules by using the maximum collector current falling rate is proposed. First, a theoretical model of the transient collector current during turn-<sc>off</sc> process is developed in terms of the behavior characteristics of the inside storage carriers. Then, the inherent linear relationship between the maximum collector current falling rate <inline-formula><tex-math notation="LaTeX"> $dI_{C}/dt$</tex-math></inline-formula> and junction temperature <inline-formula><tex-math notation="LaTeX">$T_{j}$ </tex-math></inline-formula> is demonstrated and investigated. Fortunately, benefitting from the presence of the intrinsic parasitic inductance <inline-formula><tex-math notation="LaTeX">$L_{\rm eE}$</tex-math></inline-formula> between the Kelvin and power emitters of IGBT modules, the maximum <inline-formula><tex-math notation="LaTeX"> $dI_{C}/dt$</tex-math></inline-formula> can be easily measured to validate the theoretical analysis. Consequently, the maximum <inline-formula><tex-math notation="LaTeX">$dI_{C}/dt$</tex-math></inline-formula> during turn-<sc>off</sc> process is a promising DTSEP for IGBT module junction temperature estimation. Moreover, the physical device parameters that affect the temperature sensitivity of the maximum <inline-formula><tex-math notation="LaTeX">$dI_{C}/dt$ </tex-math></inline-formula> are also discussed with the derived transient collector current falling model.

[1]  B. J. Baliga,et al.  Advanced High Voltage Power Device Concepts , 2011 .

[2]  L. Dupont,et al.  Comparison of junction temperature evaluations in a power IGBT module using an IR camera and three thermo-sensitive electrical parameters , 2012, 2012 Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC).

[3]  Dawei Xiang,et al.  Condition Monitoring Power Module Solder Fatigue Using Inverter Harmonic Identification , 2012, IEEE Transactions on Power Electronics.

[4]  W. Gerlach,et al.  On the turn-off behaviour of the NPT-IGBT under clamped inductive loads , 1996 .

[5]  J. Schumann,et al.  Charge carrier extraction IGBT model for circuit simulators , 2012, 2012 15th International Power Electronics and Motion Control Conference (EPE/PEMC).

[6]  Frede Blaabjerg,et al.  Design for reliability of power electronic systems , 2012, IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics Society.

[7]  Vinod Kumar Khanna,et al.  The insulated gate bipolar transistor (IGBT) : theory and design , 2003 .

[8]  Dominique Planson,et al.  Comparison of high voltage and high temperature performances of wide bandgap semiconductors for vertical power devices , 2010 .

[9]  Peter Tavner,et al.  Condition Monitoring for Device Reliability in Power Electronic Converters: A Review , 2010, IEEE Transactions on Power Electronics.

[10]  F. Calmon,et al.  Numerical and Analytical Investigations on IGBTs Thermal Behaviour , 1997 .

[11]  M. Liserre,et al.  Junction temperature measurements via thermo-sensitive electrical parameters and their application to condition monitoring and active thermal control of power converters , 2013, IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society.

[12]  Wuhua Li,et al.  Online High-Power P-i-N Diode Chip Temperature Extraction and Prediction Method With Maximum Recovery Current di/dt , 2015, IEEE Transactions on Power Electronics.

[13]  Frede Blaabjerg,et al.  Study and Handling Methods of Power IGBT Module Failures in Power Electronic Converter Systems , 2015, IEEE Transactions on Power Electronics.

[14]  Geng Yang,et al.  LVRT Capability of DFIG-Based WECS Under Asymmetrical Grid Fault Condition , 2013, IEEE Transactions on Industrial Electronics.

[15]  Bongtae Han,et al.  Physics-of-Failure, Condition Monitoring, and Prognostics of Insulated Gate Bipolar Transistor Modules: A Review , 2015, IEEE Transactions on Power Electronics.

[16]  L. Ran,et al.  Investigation Into IGBT dV/dt During Turn-Off and Its Temperature Dependence , 2011, IEEE Transactions on Power Electronics.

[17]  Dawei Xiang,et al.  An Industry-Based Survey of Reliability in Power Electronic Converters , 2011, IEEE Transactions on Industry Applications.

[18]  Vinod Kumar Khanna,et al.  Insulated Gate Bipolar Transistor IGBT Theory and Design: Khanna/Insulated Gate Bipolar Transistor IGBT Theory and Design , 2003 .

[19]  Xiangning He,et al.  Online High-Power p-i-n Diode Junction Temperature Extraction With Reverse Recovery Fall Storage Charge , 2017, IEEE Transactions on Power Electronics.

[20]  F. Umbach,et al.  The new power semiconductor generation: 1200V IGBT4 and EmCon4 Diode , 2006, 2006 India International Conference on Power Electronics.

[21]  Frede Blaabjerg,et al.  Modern IGBT gate driving methods for enhancing reliability of high-power converters - An overview , 2016, Microelectron. Reliab..

[22]  Wuhua Li,et al.  A thermo-sensitive electrical parameter with maximum dIC/dt during turn-off for high power Trench/Field-Stop IGBT modules , 2016, 2016 IEEE Applied Power Electronics Conference and Exposition (APEC).

[23]  B. Jayant Baliga,et al.  Fundamentals of Power Semiconductor Devices , 2008 .

[24]  L. Dupont,et al.  Temperature Measurement of Power Semiconductor Devices by Thermo-Sensitive Electrical Parameters—A Review , 2012, IEEE Transactions on Power Electronics.

[25]  Xiao-Ping Zhang,et al.  A DC current flow controller for meshed modular multilevel converter multiterminal HVDC grids , 2015 .

[26]  P. Kanschat,et al.  V IGBT 4-High Power-a new Technology Generation with Optimized Characteristics for High Current Modules , 2006 .

[27]  Pengfei Sun,et al.  Junction Temperature Extraction Approach With Turn-Off Delay Time for High-Voltage High-Power IGBT Modules , 2016, IEEE Transactions on Power Electronics.

[28]  Reinhold Bayerer,et al.  Advanced packaging yields higher performance and reliability in power electronics , 2010, Microelectron. Reliab..

[29]  Bruno Allard,et al.  State of the art of high temperature power electronics , 2009 .