An absolute rotary position sensor based on cylindrical coordinate color space transformation

Abstract In this paper, a novel, very simple and low-cost absolute rotary position sensor is presented. The sensor operation is based on the RGB to cylindrical coordinate color space transformation. A very simple experimental setup based on optical reflective sensors for absolute rotary position sensing in order to demonstrate proof of concept is given. Instead of using complex solution consisting of color sensor and printed color wheel, a much simpler solution that uses three optical reflective sensors and grayscale wheel is proposed. The proposed sensor has linear characteristics with accuracy below ±1°, resolution of 0.1° and linearity with R 2 of 0.99998, within the measurement range from 0° to 360°.

[1]  Yee-Pien Yang,et al.  Improved Angular Displacement Estimation Based on Hall-Effect Sensors for Driving a Brushless Permanent-Magnet Motor , 2014, IEEE Transactions on Industrial Electronics.

[2]  James D. Foley,et al.  Fundamentals of interactive computer graphics , 1982 .

[3]  W. J. Fleming,et al.  Overview of automotive sensors , 2001 .

[4]  Massimo Bergamasco,et al.  Novel Magnetic Sensing Approach with Improved Linearity , 2013, Sensors.

[5]  Dragan Denić,et al.  Code reading synchronization method for pseudorandom position encoders , 2009 .

[6]  Allan Hanbury,et al.  Constructing cylindrical coordinate colour spaces , 2008, Pattern Recognit. Lett..

[7]  I. Husain,et al.  Elimination of discrete position sensor and current sensor in switched reluctance motor drives , 1990, Conference Record of the 1990 IEEE Industry Applications Society Annual Meeting.

[8]  Goran Stojanovic,et al.  A Compact Inductive Position Sensor Made by Inkjet Printing Technology on a Flexible Substrate , 2012, Sensors.

[9]  Jin-Woo Ahn,et al.  Novel encoder for switching angle control of SRM , 2006, IEEE Transactions on Industrial Electronics.

[10]  Mariano Artés,et al.  A New Methodology for Vibration Error Compensation of Optical Encoders , 2012, Sensors.

[11]  Goran Stojanovic,et al.  Optimization and Modeling of Ink-Jet Printed Flexible Position Sensor , 2013 .

[12]  Fenglei Ni,et al.  A novel absolute angular position sensor based on electromagnetism , 2013 .

[13]  H. Toyoda,et al.  A 3.2 kHz, 14-Bit Optical Absolute Rotary Encoder With a CMOS Profile Sensor , 2008, IEEE Sensors Journal.

[14]  Christian Schott,et al.  Contactless 360° absolute angular CMOS microsystem based on vertical Hall sensors , 2004 .

[15]  Alex Ellin,et al.  The design and application of rotary encoders , 2008 .

[16]  Jo W. Spronck,et al.  A smart capacitive absolute angular-position sensor , 1994 .

[17]  M. Ehsani,et al.  New modulation encoding techniques for indirect rotor position sensing in switched reluctance motors , 1992, Conference Record of the 1992 IEEE Industry Applications Society Annual Meeting.

[18]  A R Smith,et al.  Color Gamut Transformation Pairs , 1978 .

[19]  Marcel Tresanchez,et al.  Using the image acquisition capabilities of the optical mouse sensor to build an absolute rotary encoder , 2010 .

[20]  Alvy Ray Smith,et al.  Color gamut transform pairs , 1978, SIGGRAPH.

[21]  Hiroyuki Fujimoto,et al.  Self-calibratable rotary encoder , 2005 .

[22]  Hiroyuki Wakiwaka,et al.  Index phase output characteristics of magnetic rotary encoder using a magneto-resistive element , 1997 .

[23]  Jo W. Spronck,et al.  A contactless capacitive angular-position sensor , 2003 .

[24]  W.J. Fleming,et al.  New Automotive Sensors—A Review , 2008, IEEE Sensors Journal.

[25]  Xu Tao,et al.  A robust photoelectric angular position sensor especially for a steerable underground boring tool , 2005 .