Anatomy and development of the nervous system of Nematostella vectensis, an anthozoan cnidarian

Nematostella vectensis, an anthozoan cnidarian, whose genome has been sequenced and is suitable for developmental and ecological studies, has a complex neural morphology that is modified during development from the larval to adult form. N. vectensis' nervous system is a diffuse nerve net with both ectodermal sensory and effector cells and endodermal multipolar ganglion cells. This nerve net consists of several distinct neural territories along the oral–aboral axis including the pharyngeal and oral nerve rings, and the larval apical tuft. These neuralized regions correspond to expression of conserved bilaterian neural developmental regulatory genes including homeodomain transcription factors and NCAMs. Early neurons and stem cell populations identified with NvMsi, NvELAV, and NvGCM, indicate that neural differentiation occurs throughout the animal and initiates prior to the conclusion of gastrulation. Neural specification in N. vectensis appears to occur through an independent mechanism from that in the classical cnidarian model Hydra. © 2009 Wiley Periodicals, Inc. Develop Neurobiol, 2009

[1]  H. Parkhurst,et al.  The Elementary Nervous System. , 1919 .

[2]  G. E. Smith The Elementary Nervous System , 1919, Nature.

[3]  C. Pantin Excitation of Nematocysts , 1942, Nature.

[4]  C. Cutress An Interpretation of the Structure and Distribution of Cnidae in Anthozoa , 1955 .

[5]  S. Goldhor Physiological Approach to the Lower Animals , 1962, The Yale Journal of Biology and Medicine.

[6]  G. Mackie CONDUCTION IN THE NERVE-FREE EPITHELIA OF SIPHONOPHORES. , 1965, American zoologist.

[7]  G. Mackie,et al.  Epithelial Conduction in Hydromedusae , 1968, The Journal of general physiology.

[8]  J. A. Ramsay Physiological Approach to the Lower Animals , 1968 .

[9]  J. A. Westfall,et al.  ULTRASTRUCTURAL EVIDENCE OF POLARIZED SYNAPSES IN THE NERVE NET OF HYDRA , 1971, The Journal of cell biology.

[10]  R. Williams A redescription of the brackish-water sea anemone Nematostella vectensis Stephenson, with an appraisal of congeneric species , 1975 .

[11]  G. Mackie Propagated spikes and secretion in a coelenterate glandular epithelium , 1976, The Journal of general physiology.

[12]  P. Frank,et al.  Histology and sexual reproduction of the anemone Nematostella vectensis Stephenson 1935 , 1976 .

[13]  M. Dennis,et al.  Developmental neurobiology , 1971, Neurology.

[14]  A. Grinnell,et al.  Introduction to Nervous Systems , 1978 .

[15]  Jellyfish neurobiology since Romanes , 1980, Trends in Neurosciences.

[16]  P. A. Anderson Physiology of a bidirectional, excitatory, chemical synapse. , 1985, Journal of neurophysiology.

[17]  C. Grimmelikhuijzen,et al.  Isolation of pyroGlu-Gly-Arg-Phe-NH2 (Antho-RFamide), a neuropeptide from sea anemones. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[18]  R. Satterlie,et al.  Organization of Conducting Systems in “Simple” Invertebrates: Porifera, Cnidaria and Ctenophora , 1987 .

[19]  U. Grünert,et al.  Three‐dimensional structure of bidirectional, excitatory chemical synapses in the jellyfish Cyanea capillata , 1988, Synapse.

[20]  A. Spencer,et al.  The importance of cnidarian synapses for neurobiology. , 1989, Journal of neurobiology.

[21]  K. White,et al.  Characterization and spatial distribution of the ELAV protein during Drosophila melanogaster development. , 1991, Journal of neurobiology.

[22]  K. England Nematocysts of sea anemones (Actiniaria, Ceriantharia and Corallimorpharia: Cnidaria): nomenclature , 1991 .

[23]  S. Austad Invertebrates , 1991, Experimental Gerontology.

[24]  C. Hand,et al.  The Culture, Sexual and Asexual Reproduction, and Growth of the Sea Anemone Nematostella vectensis. , 1992, The Biological bulletin.

[25]  E. Kandel,et al.  Modulation of an NCAM-related adhesion molecule with long-term synaptic plasticity in Aplysia. , 1992, Science.

[26]  R. Meech,et al.  Ionic currents in giant motor axons of the jellyfish, Aglantha digitale. , 1993, Journal of neurophysiology.

[27]  R. Meech,et al.  Potassium channel family in giant motor axons of Aglantha digitale. , 1993, Journal of neurophysiology.

[28]  N. Patel,et al.  repo encodes a glial-specific homeo domain protein required in the Drosophila nervous system. , 1994, Genes & development.

[29]  T. Hosoya,et al.  Glial cells missing: A binary switch between neuronal and glial determination in drosophila , 1995, Cell.

[30]  P. Good A conserved family of elav-like genes in vertebrates. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[31]  H. Bode The interstitial cell lineage of hydra: a stem cell system that arose early in evolution. , 1996, Journal of cell science.

[32]  H. Okano,et al.  Expression of Neural RNA-Binding Proteins in the Postnatal CNS: Implications of Their Roles in Neuronal and Glial Cell Development , 1997, The Journal of Neuroscience.

[33]  F. Walsh,et al.  Neural cell adhesion molecules of the immunoglobulin superfamily: role in axon growth and guidance. , 1997, Annual review of cell and developmental biology.

[34]  Peer Bork,et al.  SMART: identification and annotation of domains from signalling and extracellular protein sequences , 1999, Nucleic Acids Res..

[35]  J. Keene Why is Hu where? Shuttling of early-response-gene messenger RNA subsets. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[36]  P. Harrison,et al.  Cnidaria and Ctenophora , 1999 .

[37]  R. Darnell,et al.  Mammalian ELAV-like neuronal RNA-binding proteins HuB and HuC promote neuronal development in both the central and the peripheral nervous systems. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[38]  D. Hayward,et al.  Pax gene diversity in the basal cnidarian Acropora millepora (Cnidaria, Anthozoa): implications for the evolution of the Pax gene family. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[39]  S. Fisher,et al.  The glial cells missing-1 protein is essential for branching morphogenesis in the chorioallantoic placenta , 2000, Nature Genetics.

[40]  K. White,et al.  The Neuron-Enriched Splicing Pattern ofDrosophila erect wing Is Dependent on the Presence of ELAV Protein , 2000, Molecular and Cellular Biology.

[41]  H. Okano,et al.  Expression patterns of musashi homologs of the ascidians, Halocynthia roretzi and Ciona intestinalis , 2000, Development Genes and Evolution.

[42]  R. Meech,et al.  Central circuitry in the jellyfish Aglantha digitale. III. The rootlet and pacemaker systems. , 2000, The Journal of experimental biology.

[43]  M. Anctil,et al.  Monoamine release by neurons of a primitive nervous system: an amperometric study , 2001, Journal of neurochemistry.

[44]  John P. Huelsenbeck,et al.  MRBAYES: Bayesian inference of phylogenetic trees , 2001, Bioinform..

[45]  H. Okano,et al.  Translational repression determines a neuronal potential in Drosophila asymmetric cell division , 2001, Nature.

[46]  C. David,et al.  A switch in disulfide linkage during minicollagen assembly in Hydra nematocysts , 2001, The EMBO journal.

[47]  K. Mikoshiba,et al.  The Neural RNA-Binding Protein Musashi1 Translationally Regulates Mammalian numb Gene Expression by Interacting with Its mRNA , 2001, Molecular and Cellular Biology.

[48]  H. Okano,et al.  Musashi: a translational regulator of cell fate. , 2002, Journal of cell science.

[49]  E. Davidson,et al.  Precambrian animal life: probable developmental and adult cnidarian forms from Southwest China. , 2002, Developmental biology.

[50]  C. David,et al.  Poly-γ-glutamate synthesis during formation of nematocyst capsules in Hydra , 2002 .

[51]  O. Koizumi Developmental neurobiology of hydra, a model animal of cnidarians , 2002 .

[52]  U. Technau,et al.  Induction of gametogenesis in the basal cnidarian Nematostella vectensis (Anthozoa) , 2002, Development Genes and Evolution.

[53]  N. Perrone-Bizzozero,et al.  Role of HuD and other RNA‐binding proteins in neural development and plasticity , 2002, Journal of neuroscience research.

[54]  M. Williamson,et al.  Neuropeptides in Cnidarians , 2002 .

[55]  G. Kass-simon,et al.  The behavioral and developmental physiology of nematocysts , 2002 .

[56]  R. Satterlie Neuronal control of swimming in jellyfish: a comparative story , 2002 .

[57]  M. Williamson,et al.  Neuropeptides in cnidarians : Biology of neglected groups: Cnidaria , 2002 .

[58]  R. Williams Locomotory behaviour and functional morphology of Nematostella vectensis (Anthozoa: Actiniaria: Edwardsiidae): a contribution to a comparative study of burrowing behaviour in athenarian sea anemones , 2003 .

[59]  E. Lander,et al.  Anteroposterior Patterning in Hemichordates and the Origins of the Chordate Nervous System , 2003, Cell.

[60]  M. Martindale,et al.  An ancient role for nuclear β-catenin in the evolution of axial polarity and germ layer segregation , 2003, Nature.

[61]  O. Hobert,et al.  New insights into the diversity and function of neuronal immunoglobulin superfamily molecules. , 2003, Annual review of neuroscience.

[62]  H. Reichert,et al.  An urbilaterian origin of the tripartite brain: developmental genetic insights from Drosophila , 2003, Development.

[63]  C. Chothia,et al.  The immunoglobulin superfamily in Drosophila melanogaster and Caenorhabditis elegans and the evolution of complexity , 2003, Development.

[64]  John P. Huelsenbeck,et al.  MrBayes 3: Bayesian phylogenetic inference under mixed models , 2003, Bioinform..

[65]  H. Okano,et al.  Drosophila homeodomain protein REPO controls glial differentiation by cooperating with ETS and BTB transcription factors , 2003, Development.

[66]  Y. Wakamatsu Understanding glial differentiation in vertebrate nervous system development. , 2004, The Tohoku journal of experimental medicine.

[67]  J. Finnerty,et al.  Investigating the origins of triploblasty: `mesodermal' gene expression in a diploblastic animal, the sea anemone Nematostella vectensis (phylum, Cnidaria; class, Anthozoa) , 2004, Development.

[68]  K. England Nematocysts of sea anemones (Actiniaria, Ceriantharia and Corallimorpharia: Cnidaria): nomenclature , 1991, Hydrobiologia.

[69]  O. Koizumi,et al.  Chemical anatomy of hydra nervous system using antibodies against hydra neuropeptides: a review , 2004, Hydrobiologia.

[70]  P. A. Anderson,et al.  Evidence for a Common Pattern of Peptidergic Innervation of Cnidocytes , 2004, The Biological Bulletin.

[71]  Chemical anatomy of hydra nervous system using antibodies against hydra neuropeptides: a review , 2004 .

[72]  J. A. Westfall Neural pathways and innervation of cnidocytes in tentacles of sea anemones , 2004 .

[73]  A. Krogh,et al.  A combined transmembrane topology and signal peptide prediction method. , 2004, Journal of molecular biology.

[74]  C. David,et al.  Evolution of gap junctions: the missing link? , 2004, Current Biology.

[75]  J. Finnerty,et al.  Origins of Bilateral Symmetry: Hox and Dpp Expression in a Sea Anemone , 2004, Science.

[76]  G. Mackie Central Neural Circuitry in the Jellyfish Aglantha , 2004, Neurosignals.

[77]  J. Finnerty,et al.  Rising starlet: the starlet sea anemone, Nematostella vectensis. , 2005, BioEssays : news and reviews in molecular, cellular and developmental biology.

[78]  R. Mirsky,et al.  The origin and development of glial cells in peripheral nerves , 2005, Nature Reviews Neuroscience.

[79]  B. Jones,et al.  Transcriptional regulation of the Drosophila glial gene repo , 2005, Mechanisms of Development.

[80]  M. Martindale,et al.  Unexpected complexity of the Wnt gene family in a sea anemone , 2005, Nature.

[81]  S. R. Elliott,et al.  Immunocytochemical evidence for biogenic amines and immunogold labeling of serotonergic synapses in tentacles of Aiptasia pallida (Cnidaria, Anthozoa) , 2005 .

[82]  M. Martindale,et al.  Genomic inventory and expression of Sox and Fox genes in the cnidarian Nematostella vectensis , 2005, Development Genes and Evolution.

[83]  H. Okano,et al.  Function of RNA-binding protein Musashi-1 in stem cells. , 2005, Experimental cell research.

[84]  T. Holstein,et al.  Asymmetric expression of the BMP antagonists chordin and gremlin in the sea anemone Nematostella vectensis: implications for the evolution of axial patterning. , 2006, Developmental biology.

[85]  Katsuhiko Mineta,et al.  Structure and function of primitive immunoglobulin superfamily neural cell adhesion molecules: a lesson from studies on planarian , 2006, Genes to cells : devoted to molecular & cellular mechanisms.

[86]  G. Luo,et al.  A nuclear function of Hu proteins as neuron-specific alternative RNA processing regulators. , 2006, Molecular biology of the cell.

[87]  E. McLaughlin,et al.  The RNA-binding protein Musashi is required intrinsically to maintain stem cell identity. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[88]  M. Schachner,et al.  Neural recognition molecules of the immunoglobulin superfamily: signaling transducers of axon guidance and neuronal migration , 2006, Nature Neuroscience.

[89]  M. Martindale,et al.  Dorso/Ventral Genes Are Asymmetrically Expressed and Involved in Germ-Layer Demarcation during Cnidarian Gastrulation , 2006, Current Biology.

[90]  M. Martindale,et al.  Molecular evidence for deep evolutionary roots of bilaterality in animal development. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[91]  M. Martindale,et al.  FGF signaling in gastrulation and neural development in Nematostella vectensis, an anthozoan cnidarian , 2007, Development Genes and Evolution.

[92]  B. Schierwater,et al.  Medusozoan phylogeny and character evolution clarified by new large and small subunit rDNA data and an assessment of the utility of phylogenetic mixture models. , 2006, Systematic biology.

[93]  B. Kaang,et al.  Regulation of ApC/EBP mRNA by the Aplysia AU‐rich element‐binding protein, ApELAV, and its effects on 5‐hydroxytryptamine‐induced long‐term facilitation , 2006, Journal of neurochemistry.

[94]  Nicholas H. Putnam,et al.  Sea Anemone Genome Reveals Ancestral Eumetazoan Gene Repertoire and Genomic Organization , 2007, Science.

[95]  Bruce R. Johnson An Introduction to Nervous Systems , 2007, Journal of Undergraduate Neuroscience Education.

[96]  D. Arendt,et al.  Molecular Architecture of Annelid Nerve Cord Supports Common Origin of Nervous System Centralization in Bilateria , 2007, Cell.

[97]  M. Martindale,et al.  Asymmetric developmental potential along the animal-vegetal axis in the anthozoan cnidarian, Nematostella vectensis, is mediated by Dishevelled. , 2007, Developmental biology.

[98]  T. Bosch Symmetry breaking in stem cells of the basal metazoan Hydra. , 2007, Progress in molecular and subcellular biology.

[99]  G. Kass-simon,et al.  Cnidarian chemical neurotransmission, an updated overview. , 2007, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[100]  A. Giangrande,et al.  Neurogenic role of Gcm transcription factors is conserved in chicken spinal cord , 2006, Development.

[101]  David Q. Matus,et al.  Pre-Bilaterian Origins of the Hox Cluster and the Hox Code: Evidence from the Sea Anemone, Nematostella vectensis , 2007, PloS one.

[102]  M. Martindale,et al.  Gastrulation in the cnidarian Nematostella vectensis occurs via invagination not ingression. , 2007, Developmental biology.

[103]  Todd H. Oakley,et al.  A Post-Synaptic Scaffold at the Origin of the Animal Kingdom , 2007, PloS one.

[104]  David Q. Matus,et al.  Expression of Pax gene family members in the anthozoan cnidarian, Nematostella vectensis , 2007, Evolution & development.

[105]  J. Finnerty,et al.  Genomic organization, gene structure, and developmental expression of three clustered otx genes in the sea anemone Nematostella vectensis. , 2007, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[106]  F. Rentzsch,et al.  FGF signalling controls formation of the apical sensory organ in the cnidarian Nematostella vectensis , 2008, Development.

[107]  David Q. Matus,et al.  Broad phylogenomic sampling improves resolution of the animal tree of life , 2008, Nature.