Changes in default mode network connectivity in different glucose metabolism status and diabetes duration

[1]  Adrian Preda,et al.  Multimodal neuromarkers in schizophrenia via cognition-guided MRI fusion , 2018, Nature Communications.

[2]  Kai Wang,et al.  Multi-Site Diagnostic Classification of Schizophrenia Using Discriminant Deep Learning with Functional Connectivity MRI , 2018, EBioMedicine.

[3]  W. Rathmann,et al.  Prediabetes is associated with lower brain gray matter volume in the general population. The Study of Health in Pomerania (SHIP). , 2017, Nutrition, metabolism, and cardiovascular diseases : NMCD.

[4]  H. Macpherson,et al.  Brain functional alterations in Type 2 Diabetes – A systematic review of fMRI studies , 2017, Frontiers in Neuroendocrinology.

[5]  C. Jack,et al.  Diabetes, Prediabetes, and Brain Volumes and Subclinical Cerebrovascular Disease on MRI: The Atherosclerosis Risk in Communities Neurocognitive Study (ARIC-NCS) , 2017, Diabetes Care.

[6]  Q. Gong,et al.  Reduced Gray Matter Volume in Patients with Type 2 Diabetes Mellitus , 2017, Front. Aging Neurosci..

[7]  Allan L. Reiss,et al.  Compensatory Hyperconnectivity in Developing Brains of Young Children With Type 1 Diabetes , 2016, Diabetes.

[8]  Yong Liu,et al.  Altered Intranetwork and Internetwork Functional Connectivity in Type 2 Diabetes Mellitus With and Without Cognitive Impairment , 2016, Scientific Reports.

[9]  Enrico Amico,et al.  Neural correlates of consciousness in patients who have emerged from a minimally conscious state: a cross-sectional multimodal imaging study , 2016, The Lancet Neurology.

[10]  P. Dagnelie,et al.  Erratum. Functional Brain Networks Are Altered in Type 2 Diabetes and Prediabetes: Signs for Compensation of Cognitive Decrements? The Maastricht Study. Diabetes 2016;65:2404–2413 , 2016, Diabetes.

[11]  Tianzi Jiang,et al.  Resting-state functional network connectivity in prefrontal regions differs between unmedicated patients with bipolar and major depressive disorders. , 2016, Journal of affective disorders.

[12]  Kewei Chen,et al.  Selectively Disrupted Functional Connectivity Networks in Type 2 Diabetes Mellitus , 2015, Front. Aging Neurosci..

[13]  Rami K. Niazy,et al.  Resting-State Networks , 2015 .

[14]  M. Raichle The restless brain: how intrinsic activity organizes brain function , 2015, Philosophical Transactions of the Royal Society B: Biological Sciences.

[15]  Yun Jiao,et al.  Aberrant functional connectivity of default-mode network in type 2 diabetes patients , 2015, European Radiology.

[16]  D. Hu,et al.  Neurobiological basis of head motion in brain imaging , 2014, Proceedings of the National Academy of Sciences.

[17]  Dewen Hu,et al.  Unsupervised classification of major depression using functional connectivity MRI , 2014, Human brain mapping.

[18]  Rui Li,et al.  Multimodal intervention in older adults improves resting-state functional connectivity between the medial prefrontal cortex and medial temporal lobe† , 2014, Front. Aging Neurosci..

[19]  F. Bai,et al.  Altered baseline brain activity in type 2 diabetes: A resting-state fMRI study , 2013, Psychoneuroendocrinology.

[20]  Geraint Rees,et al.  The Neural Correlates of Consciousness , 2003 .

[21]  M. Shenton,et al.  Resting-State Brain Functional Connectivity Is Altered in Type 2 Diabetes , 2012, Diabetes.

[22]  Cornelis J. Stam,et al.  Activity Dependent Degeneration Explains Hub Vulnerability in Alzheimer's Disease , 2012, PLoS Comput. Biol..

[23]  Martin Klein,et al.  Resting-State Brain Networks in Type 1 Diabetic Patients With and Without Microangiopathy and Their Relation to Cognitive Functions and Disease Variables , 2012, Diabetes.

[24]  Jessica R. Andrews-Hanna,et al.  The Brain’s Default Network and Its Adaptive Role in Internal Mentation , 2012, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[25]  D. Hu,et al.  Identifying major depression using whole-brain functional connectivity: a multivariate pattern analysis. , 2012, Brain : a journal of neurology.

[26]  W. Seeley,et al.  Divergent network connectivity changes in healthy APOE ε4 carriers: disinhibition or compensation? , 2011, Archives of neurology.

[27]  Marcus E. Raichle,et al.  The Restless Brain , 2011, Brain Connect..

[28]  E. McAuley,et al.  Exercise training increases size of hippocampus and improves memory , 2011, Proceedings of the National Academy of Sciences.

[29]  F. Barkhof,et al.  Resting state networks change in clinically isolated syndrome. , 2010, Brain : a journal of neurology.

[30]  Frederik Barkhof,et al.  The limits of functional reorganization in multiple sclerosis , 2010, Neurology.

[31]  Paul J. Laurienti,et al.  Frontiers in Aging Neuroscience Aging Neuroscience , 2022 .

[32]  Zhijun Zhang,et al.  Impairments in cognition and resting-state connectivity of the hippocampus in elderly subjects with type 2 diabetes , 2010, Neuroscience Letters.

[33]  S. Debener,et al.  Default-mode brain dysfunction in mental disorders: A systematic review , 2009, Neuroscience & Biobehavioral Reviews.

[34]  B. Biswal,et al.  Functional connectivity of default mode network components: Correlation, anticorrelation, and causality , 2009, Human brain mapping.

[35]  T. Rong,et al.  Clinically Isolated Syndrome , 2008 .

[36]  Vince D. Calhoun,et al.  Alterations in Memory Networks in Mild Cognitive Impairment and Alzheimer's Disease: An Independent Component Analysis , 2006, The Journal of Neuroscience.

[37]  P. Fransson Spontaneous low‐frequency BOLD signal fluctuations: An fMRI investigation of the resting‐state default mode of brain function hypothesis , 2005, Human brain mapping.