The LAMP‐like protein p67 plays an essential role in the lysosome of African trypanosomes

RNAi knockdown was employed to study the function of p67, a lysosome‐associated membrane protein (LAMP)‐like type I transmembrane lysosomal glycoprotein in African trypanosomes. Conditional induction of p67 dsRNA resulted in specific ∼90% reductions in de novo p67 synthesis in both mammalian bloodstream and procyclic insect‐stage parasites. Bloodstream cell growth was severely retarded with extensive death after > 24 h of induction. Biosynthetic trafficking of residual p67, and of the soluble lysosomal protease trypanopain, were unimpaired. Endocytosis of tomato lectin, a surrogate receptor‐mediated cargo, was only mildly impaired (∼20%), but proper lysosomal targeting was unaffected. p67 ablation had dramatic effects on lysosomal morphology with gross enlargement (four‐ to fivefold) and internal membrane profiles reminiscent of autophagic vacuoles. Ablation of p67 expression rendered bloodstream trypanosomes refractory to lysis by human trypanolytic factor (TLF), a lysosomally activated host innate immune mediator. Similar effects on lysosomal morphology and TLF sensitivity were also obtained by two pharmacological agents that neutralize lysosomal pH – chloroquine and bafilomycin A1. Surprisingly, however, lysosomal pH was not affected in ablated cells suggesting that other physiological alterations must account for increased resistance to TLF. These results indicate p67 plays an essential role in maintenance of normal lysosomal structure and physiology in bloodstream‐stage African trypanosomes.

[1]  J. Bangs,et al.  A determination of the steady state lysosomal pH of bloodstream stage African trypanosomes. , 2008, Molecular and biochemical parasitology.

[2]  J. Bangs,et al.  Multiple Motifs Regulate Trafficking of the LAMP‐Like Protein p67 in the Ancient Eukaryote Trypanosoma brucei , 2007, Traffic.

[3]  T. Jentsch Chloride and the endosomal–lysosomal pathway: emerging roles of CLC chloride transporters , 2007, The Journal of physiology.

[4]  S. Grinstein,et al.  LAMP proteins are required for fusion of lysosomes with phagosomes , 2007, The EMBO journal.

[5]  E. Eskelinen Roles of LAMP-1 and LAMP-2 in lysosome biogenesis and autophagy. , 2006, Molecular aspects of medicine.

[6]  L. Tetley,et al.  Cysteine peptidases CPA and CPB are vital for autophagy and differentiation in Leishmania mexicana , 2006, Molecular microbiology.

[7]  D. Nolan,et al.  The trypanolytic factor of human serum , 2006, Nature Reviews Microbiology.

[8]  S. Hajduk,et al.  Serum Resistance-Associated Protein Blocks Lysosomal Targeting of Trypanosome Lytic Factor in Trypanosoma brucei , 2006, Eukaryotic Cell.

[9]  D. Rigden,et al.  Implications of a genomic search for autophagy-related genes in trypanosomatids. , 2005, Biochemical Society transactions.

[10]  S. Hajduk,et al.  Human High Density Lipoproteins Are Platforms for the Assembly of Multi-component Innate Immune Complexes* , 2005, Journal of Biological Chemistry.

[11]  Mark C. Field,et al.  Developmental Variation in Rab11-Dependent Trafficking in Trypanosoma brucei , 2005, Eukaryotic Cell.

[12]  M. Ferguson,et al.  Trypanosoma brucei Glycoproteins Contain Novel Giant Poly-N-acetyllactosamine Carbohydrate Chains* , 2005, Journal of Biological Chemistry.

[13]  Mark C. Field,et al.  Intracellular Membrane Transport Systems in Trypanosoma brucei , 2004, Traffic.

[14]  J. McKerrow,et al.  A Cathepsin B-like Protease Is Required for Host Protein Degradation in Trypanosoma brucei* , 2004, Journal of Biological Chemistry.

[15]  M. Engstler,et al.  Endocytosis, membrane recycling and sorting of GPI‐anchored proteins: Trypanosoma brucei as a model system , 2004, Molecular microbiology.

[16]  R. Lüllmann-Rauch,et al.  Disturbed cholesterol traffic but normal proteolytic function in LAMP-1/LAMP-2 double-deficient fibroblasts. , 2004, Molecular biology of the cell.

[17]  J. Gut,et al.  Plasmodium falciparum cysteine protease falcipain-1 is not essential in erythrocytic stage malaria parasites. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[18]  H. Schwarz,et al.  Kinetics of endocytosis and recycling of the GPI-anchored variant surface glycoprotein in Trypanosoma brucei , 2004, Journal of Cell Science.

[19]  A. Galinier,et al.  Molecular Microbiology , 2004, Journal of Clinical Pathology.

[20]  S. Emr,et al.  A unified nomenclature for yeast autophagy-related genes. , 2003, Developmental cell.

[21]  Mark C. Field,et al.  Rab5 and Rab11 mediate transferrin and anti-variant surface glycoprotein antibody recycling in Trypanosoma brucei. , 2003, The Biochemical journal.

[22]  J. Bangs,et al.  Glycosylphosphatidylinositol-Dependent Protein Trafficking in Bloodstream Stage Trypanosoma brucei , 2003, Eukaryotic Cell.

[23]  J. Luzio,et al.  Membrane dynamics and the biogenesis of lysosomes (Review) , 2003 .

[24]  R. Waller,et al.  Developmental changes in lysosome morphology and function Leishmania parasites. , 2002, International journal for parasitology.

[25]  K. von Figura,et al.  Role of LAMP-2 in lysosome biogenesis and autophagy. , 2002, Molecular biology of the cell.

[26]  A. Balber,et al.  Developmentally regulated trafficking of the lysosomal membrane protein p67 in Trypanosoma brucei. , 2002, Journal of cell science.

[27]  S. Hajduk,et al.  Insight into the mechanism of trypanosome lytic factor-1 killing of Trypanosoma brucei brucei. , 2001, Molecular and biochemical parasitology.

[28]  M. Bogyo,et al.  Active site mapping, biochemical properties and subcellular localization of rhodesain, the major cysteine protease of Trypanosoma brucei rhodesiense. , 2001, Molecular and biochemical parasitology.

[29]  J. Raper,et al.  Trypanosome lytic factors: novel mediators of human innate immunity. , 2001, Current opinion in microbiology.

[30]  Mark C. Field,et al.  Developmental and morphological regulation of clathrin-mediated endocytosis in Trypanosoma brucei. , 2001, Journal of cell science.

[31]  S. Hajduk,et al.  The lysosomal targeting and intracellular metabolism of trypanosome lytic factor by Trypanosoma brucei brucei. , 2001, Molecular and biochemical parasitology (Print).

[32]  J. Bonifacino,et al.  The molecular machinery for lysosome biogenesis * , 2001, BioEssays : news and reviews in molecular, cellular and developmental biology.

[33]  J. Donelson,et al.  Double-stranded RNA interference in Trypanosoma brucei using head-to-head promoters. , 2000, Molecular and biochemical parasitology.

[34]  R. Lüllmann-Rauch,et al.  Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2-deficient mice , 2000, Nature.

[35]  S. Dimauro,et al.  Primary LAMP-2 deficiency causes X-linked vacuolar cardiomyopathy and myopathy (Danon disease) , 2000, Nature.

[36]  M. G. Lee,et al.  Receptor-mediated Endocytosis in the Procyclic Form ofTrypanosoma brucei* , 2000, The Journal of Biological Chemistry.

[37]  D. Nolan,et al.  N-linked glycans containing linear poly-N-acetyllactosamine as sorting signals in endocytosis in Trypanosoma brucei , 1999, Current Biology.

[38]  J. Mottram,et al.  Protease Trafficking in Two Primitive Eukaryotes Is Mediated by a Prodomain Protein Motif* , 1999, The Journal of Biological Chemistry.

[39]  R. Lüllmann-Rauch,et al.  Normal Lysosomal Morphology and Function in LAMP-1-deficient Mice* , 1999, The Journal of Biological Chemistry.

[40]  A. Balber,et al.  Molecular cloning of p67, a lysosomal membrane glycoprotein from Trypanosoma brucei. , 1999, Molecular and biochemical parasitology.

[41]  C. Wang,et al.  Trypanosoma brucei brucei: characterization of an ODC null bloodstream form mutant and the action of alpha-difluoromethylornithine. , 1998, Experimental parasitology.

[42]  J. Bangs,et al.  Expression of bloodstream variant surface glycoproteins in procyclic stage Trypanosoma brucei: role of GPI anchors in secretion , 1997, The EMBO journal.

[43]  S. Adibi,et al.  An Active Mechanism for Completion of the Final Stage of Protein Degradation in the Liver, Lysosomal Transport of Dipeptides* , 1997, The Journal of Biological Chemistry.

[44]  S. Hajduk,et al.  Mechanism of resistance of African trypanosomes to cytotoxic human HDL , 1997, Nature.

[45]  J. Bangs,et al.  A Soluble Secretory Reporter System in Trypanosoma brucei , 1996, The Journal of Biological Chemistry.

[46]  C. Wang,et al.  Cloning by functional complementation in Trypanosoma brucei. , 1996, Molecular and biochemical parasitology.

[47]  A. Balber,et al.  Low temperature reversibly inhibits transport from tubular endosomes to a perinuclear, acidic compartment in African trypanosomes. , 1995, Journal of cell science.

[48]  A. Balber,et al.  Transport of a lysosomal membrane glycoprotein from the Golgi to endosomes and lysosomes via the cell surface in African trypanosomes. , 1994, Journal of cell science.

[49]  A. Balber,et al.  Trypanosoma brucei brucei and T. b. gambiense: Stumpy Bloodstream Forms Express More CB1 Epitope in Endosomes and Lysosomes than Slender Forms , 1994, The Journal of eukaryotic microbiology.

[50]  S. Hajduk,et al.  Endocytosis of a cytotoxic human high density lipoprotein results in disruption of acidic intracellular vesicles and subsequent killing of African trypanosomes , 1994, The Journal of cell biology.

[51]  J. Boothroyd,et al.  Molecular cloning and cellular localization of a BiP homologue in Trypanosoma brucei. Divergent ER retention signals in a lower eukaryote. , 1993, Journal of cell science.

[52]  A. Balber,et al.  Trypanosoma brucei rhodesiense: membrane glycoproteins localized primarily in endosomes and lysosomes of bloodstream forms. , 1993, Experimental parasitology.

[53]  P. Webster,et al.  Endocytosed transferrin in African trypanosomes is delivered to lysosomes and may not be recycled. , 1992, European journal of cell biology.

[54]  P. Webster,et al.  Immunolocalization of a cysteine protease within the lysosomal system of Trypanosoma congolense. , 1991, European journal of cell biology.

[55]  A. Helenius,et al.  Characterization and cloning of lgp110, a lysosomal membrane glycoprotein from mouse and rat cells. , 1990, The Journal of biological chemistry.

[56]  S. Hajduk,et al.  Lysis of Trypanosoma brucei by a toxic subspecies of human high density lipoprotein. , 1989, The Journal of biological chemistry.

[57]  E. Pamer,et al.  Identification of a developmentally regulated cysteine protease of Trypanosoma brucei. , 1989, Molecular and biochemical parasitology.

[58]  K. Altendorf,et al.  Bafilomycins: a class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant cells. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[59]  I. Coppens,et al.  Receptor-mediated endocytosis in the bloodstream form of Trypanosoma brucei. , 1987, The Journal of protozoology.

[60]  B Poole,et al.  Cytoplasmic vacuolation of mouse peritoneal macrophages and the uptake into lysosomes of weakly basic substances , 1981, The Journal of cell biology.

[61]  S. Ohkuma,et al.  Effect of weak bases on the intralysosomal pH in mouse peritoneal macrophages , 1981, The Journal of cell biology.

[62]  R. Proia,et al.  Inactivation or elimination of potentially trypanolytic, complement-activating immune complexes by pathogenic trypanosomes , 1979, Infection and immunity.

[63]  J. Barry Capping of variable antigen on Trypanosoma brucei, and its immunological and biological significance. , 1979, Journal of cell science.

[64]  M. Rifkin Identification of the trypanocidal factor in normal human serum: high density lipoprotein. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[65]  I. Cunningham New culture medium for maintenance of tsetse tissues and growth of trypanosomatids. , 1977, The Journal of protozoology.

[66]  A. Balber,et al.  Protein uptake and digestion in bloodstream and culture forms of Trypanosoma brucei. , 1975, The Journal of protozoology.

[67]  K. Matthews,et al.  Molecular regulation of the life cycle of African trypanosomes. , 2004, Trends in parasitology.

[68]  J. Luzio,et al.  Membrane dynamics and the biogenesis of lysosomes. , 2003, Molecular membrane biology.

[69]  R. Lüllmann-Rauch,et al.  Disease model: LAMP-2 enlightens Danon disease. , 2001, Trends in molecular medicine.

[70]  G. Cross,et al.  Trypanosoma brucei , 1998 .

[71]  H. Hirumi,et al.  Axenic culture of African trypanosome bloodstream forms. , 1994, Parasitology today.

[72]  Balber Ae The pellicle and the membrane of the flagellum, flagellar adhesion zone, and flagellar pocket: functionally discrete surface domains of the bloodstream form of African trypanosomes. , 1990 .

[73]  A. Balber The pellicle and the membrane of the flagellum, flagellar adhesion zone, and flagellar pocket: functionally discrete surface domains of the bloodstream form of African trypanosomes. , 1990, Critical reviews in immunology.

[74]  J. Lloyd A study of permeability of lysosomes to amino acids and small peptides. , 1971, The Biochemical journal.